Angular Momentum

Reverse Sprinkler Friday, December 18, 2015:

What it Shows

Inspired by Richard Feynman's story in his 1985 book (pp 63-65), Surely You're Joking Mr. Feynman, the demonstration answers the question "which direction does a lawn sprinkler spin if water enters the nozzle rather than being expelled from the nozzle?" The reverse sprinkler spins in the opposite direction of a "normal" sprinkler. "Dissipative effects" has been the hand-waving reason for the past 30 years, but the real reason why it spins in the reverse direction is far from obvious (see Comments, below). It turns out that a sprinkler designed to be "truly...

Read more about Reverse Sprinkler
Tail Wags Dog

Lecturer tries to swing baseball bat while standing on turntable.

turntable

Coffee Mug on a String

What it shows:

Conservation of angular momentum and the exponential increase in friction are what save the coffee mug from smashing into the floor. Use this entertaining demonstration to introduce either of those physics concepts.

How it works:

You need a pencil, a pen, a china cup (we use a china cup to add suspense and a threat of disaster), and about 1 meter of string. Tie one end of the string to the cup and the other to the pen. Hold the pencil in one hand and drape the string over it so the cup hangs down a few centimeters. Hold the pen with your other hand (arm...

Read more about Coffee Mug on a String
Orbiter

Ball on string orbits with increasing speed as string is shortened.

What it shows:

An object moving in a circular orbit of radius r has an angular momentum given by:

L = r × mv = mr2ω.

A simple way to show conservation of angular momentum is a ball on a string, whirled around your head. As you change the length of the string, the ball's orbital speed changes to conserve angular momentum.

How it works:

The orbiter consists of a meter length of cord with a wooden ball at one end and a wooden anchor at the other. The cord passes...

Read more about Orbiter
Three Dumbbells

Lecturer rotates on turntable whilst holding two dumbbells.

What it shows:

Angular momentum, the product of a body's moment of inertia and angular velocity, is always conserved. A reduction in moment of inertia will result in a proportional rise in angular velocity.

How it works:

A volunteer holds the other two dumbbells 1 in each hand and stands upon a rotating platform. 2 With arms outstretched and a little push they begin to rotate at a certain angular velocity. By pulling in their arms to their chest, the moment of inertia is...

Read more about Three Dumbbells