[★★]

Loaded Beam

loaded beamsBeam supported at ends with platform scales and toy truck as load to demonstrate moment arms.

What it shows:

The concept of moment arms is exemplified by this model of a truck on a bridge.

How it works...

Read more about Loaded Beam
Pascal's Paradox

What it shows:

Three containers are filled with water to the same depth, and each has the same base surface area (see figure 1). Since the pressure and area are the same in each container, the force should be the same (pressure = force/area)....

Read more about Pascal's Paradox
TV Image Deflection

Image on black and white television is deflected by a magnet, not unlike the Maltese Cross.

What it shows:
The television is basically a sophisticated cathode ray tube. The electron beam in the TV is influenced by magnetic fields in the same way as in Crookes tubes.

How it works:
The image on a black & white TV is formed by a single electron gun scanning the screen. Holding a strong magnet to the side or in front of the screen deflects the beam from its regular sweep pattern, distorting the image.

Setting...

Read more about TV Image Deflection
Edge Diffraction

What it shows:

A point light source will produce seemingly sharp shadows which turn out to be not at all sharp when viewed under magnification. Narrow interference bands are seen within the shadow of a straight edge while more complicated shapes yield more complicated interference bands and striations.

...

Read more about Edge Diffraction
Lead Bell

Dull at room temperature, rings clearly after immersion in liquid nitrogen.

What it shows: 

A lead bell, dull sounding at room temperature, rings brightly when cooled to liquid nitrogen temperatures.

How it works: 

A lead bell at room temperature is dull in more ways than one. But its elasticity is temperature dependant, with an increase in elasticity as its temperature decreases. This increase in elastic modulus narrows the resonance response with frequency and increases the quality Q of the lead as...

Read more about Lead Bell
OHP Magnetic Lines of Force

What it shows:

The magnetic field lines of the Earth can be represented by the field lines of a bar magnet.

How it works:

The Earth's magnetic field is basically a magnetic dipole. It can therefore be represented to first approximation by the field of a bar magnet. The shape of the field lines can be highlighted by the sprinkling of iron filings, or by the use of plotting compasses. The latter method has the advantage of showing the variation of dip angle with latitude, with the lines of force running parallel to the surface of...

Read more about OHP Magnetic Lines of Force
Poisson's Spot

Diffraction produces a bright spot where Poisson believed there would be darkness.

Poisson's Spot

What It Shows

Edge diffraction around a 1/8" diameter steel ball bearing results in a visible spot in the center of its shadow. In 1818 this...

Read more about Poisson's Spot

Pages