Presentations

Driven Damped Oscillator

Single air track glider, with and without variable frequency driver, variable damping, and oscilloscope position vs. time display.

What It Shows

With one end of the car attached via a spring to the end of the track and the other end of the car coupled (via a similar spring) to a driving motor, we can see how the car behaves when it is driven below, at, and above the resonance frequency. Markings on the motor help to show the phase relationships between the driver and car at different frequencies. A storage scope tracks the motion of the car (see Setting It Up...

Read more about Driven Damped Oscillator
Slinky Wave Cradle

Longitudinal wave demo with suspended slinky.

What it shows:

Demonstration of longitudinal traveling waves in a spring. 

How it works:

The Slinky hangs with a bifilar suspension from a rigid thin-walled electrical conduit frame, which is light, strong and cheap. In total, 23 suspension points run the length of the spring; the cord is a thick cotton thread that attaches to a loop of the Slinky with No.10 fishing swivels. The layout of the Slinky and frame are shown in figure 1, but the thread has been...

Read more about Slinky Wave Cradle
Doppler Tuning Forks

Run towards the blackboard carrying a tuning fork...

What it shows:

Waves emitted from a moving source are Doppler shifted to higher frequencies when moving towards the observer, and shifted to lower frequencies when moving away from the observer. In this situation the source is moving away from you, but the raised frequency sound is reflected back interfering and causing beating.

How it works:

All you need is a tuning fork (say 896Hz, see comments), a reflective surface like a blackboard, and plenty of room to take a run at...

Read more about Doppler Tuning Forks
RL Time Constant

What it shows:

The growth and decay of current in an RL circuit with a time constant visible in real time.

How it works:

By choosing the values of resistance and inductance, a time constant can be selected with a value in seconds. The time constant τ is given by

τ = L/R

We chose two resistance values, 4.7K and 10K coupled with a 45kH UNILAB 1 induction coil giving time constants of 9.5sec and 4.5sec respectively.

The circuit is set out on a 1.0 × 0.5m plywood board. The actual...

Read more about RL Time Constant
Eddy Current Damping

What it shows:

A sheet of aluminum falls slowly between the poles of a magnet because induced currents in the sheet set up magnetic fields which oppose the motion.

How it works:

As the aluminum sheet falls between the poles of the magnet, eddy currents are induced in the metal. These currents set up their own magnetic fields, which through Lenz's law oppose the change that caused them. As the cause is gravity pulling the sheet to Earth, the sheet decelerates as it passes between the poles of the magnet, only to accelerate again...

Read more about Eddy Current Damping
Optics Disk

What it shows:

All of the concepts summarized by the above keywords can be clearly and quantitatively demonstrated with this piece of apparatus.

How it works:

A light source 1 rotates around the circumference of a large white disk 2 with degree graduations around the entire perimeter. The collimated beam of light grazes the surface of the disk, creating a highly visible pencil of light, so that ray tracing is easily accomplished. A horizontal mirror, positioned at the center of the disk, is used for the law of...

Read more about Optics Disk
Fiber Optics

What it shows:

Light is transmitted by a bundle of optical fibers and/or a coiled length of plastic rod, regardless of the twists and turns in the path it must negotiate. Total internal reflection keeps the light confined.

How it works:

A HeNe laser is used as the source of light. The bundle of optical fibers consists of a very large (but unknown) number of individual glass fibers measuring 0.05 mm (0.002") in diameter. About 30 cm of the bundle is exposed at the end while the rest of the length is protected by a rubber sheath....

Read more about Fiber Optics
Polarization by Absorption

What it shows:

Polaroid filters absorb one component of polarization while transmitting the perpendicular components. The intensity of transmitted light depends on the relative orientation between the polarization direction of the incoming light and the polarization axis of the filter.

...

Read more about Polarization by Absorption

Pages