Presentations

Vector Arrows

Wooden arrow vectors, hand held or mountable.

What It Shows:

Various length and color, wooden arrow vectors can be hand-held, placed (magnetically) on the blackboard, or stuck into a wooden block to define a coordinate system. Small vector blocks can be used as body axes or to visualize coordinate transformations.

...

Read more about Vector Arrows
Newton's Apple

Apple electronically released from platform; fall time given by special circuit and digital display.

What it shows:

This is a free-fall-from-rest experiment in which an apple (or any other object of comparable size) is dropped from the lecture hall ceiling into a catching bucket on the floor. By measuring the (1) distance and (2) duration of the fall, an accurate (± 0.022%) determination of the acceleration due to gravity can be made:

...

Read more about Newton's Apple
Elastic and Inelastic Collision Model

What it shows:

Two cars have the same mass and same spring bumper. When given a push and allowed to collide with a wall, one car bounces off with only a small reduction in speed ("elastic" collison) whereas the other car comes nearly to a complere stop ("inelastic" collision).

How it works:

There are two impulse cars made of identical materials and have the same mass. The car that models an elastic collision has all its lead sinkers securely attached to the frame so that they can't move. In contrast, the car that models an inelastic collision has the lead sinkers...

Read more about Elastic and Inelastic Collision Model
Foucault Pendulum Model

What it shows:

A "working model" of a Foucault pendulum to show how its oscillations appear to change due to the rotation of "Earth" below it.

How it works:

The pendulum consists of 9-cm diameter brass ball suspended from a sturdy tripod which, in turn, sits on a heavy 3-ft diameter wooden disk. The disk represents the Earth with a projection of the northern hemisphere drawn on it. The suspension point of the pendulum is positioned over the North Pole. The entire apparatus sits on a ring bearing and the disk (Earth) can be rotated slowly by hand. While the plane of...

Read more about Foucault Pendulum Model
Chaotic Pendulum

Coupled, double, physical pendulum executes chaotic motion when non-linear initial conditions are imposed.

What it Shows

A double pendulum executes simple harmonic motion (two normal modes) when displacements from equilibrium are small. However, when large displacements are imposed, the non-linear system becomes dramatically chaotic in its motion and demonstrates that deterministic systems are not necessarily predictable.

...
Read more about Chaotic Pendulum
Resonant Fountain Tube

Standing sound waves in a glass pipe are made evident by the fountains of kerosene inside the pipe.

What it shows:

The air inside a very large glass pipe (partially filled with a fluid) is acoustically excited into a standing wave. Once resonating, the locations of the velocity antinodes inside the pipe are dramatically made evident by the vigorous agitation of the fluid, resulting in fabulous foaming frothing fountains of fluid. The velocity of sound can also be determined by noting the resonance frequency and measuring the distance between antinodes....

Read more about Resonant Fountain Tube
Siren Discs

What it shows:

Demonstrate musical intervals, the relation of pitch to frequency, and autocorrelation in psycho-acoustics.

How it works:

A 25 cm diameter metal disk has a number of concentric rows of regularly spaced holes. When rotated at a uniform speed while blowing air at a row of holes, a musical note is produced by the sequence of regular puffs of air issuing from successive holes. The frequency is determined by the speed of rotation and the known number of holes.

The numbers of holes in the successive rows are 24, 27...

Read more about Siren Discs

Pages