Presentations

Collapsible Cow

What it shows:

A small crude spindly model of a cow is able to support five times its own weight. Another model, scaled up exactly six times in all dimensions, collapses under its own weight! Assuming that strength is proportional to cross-sectional area (∝ dimension 2) and weight is proportional to volume (∝ dimension 3), simply scaling the model up geometrically leads to the situation where the weight is too great for its strength.

How it works:

This demonstration was inspired by R.H. Stinson's apparatus note in the AJP (see References...

Read more about Collapsible Cow
Simple Harmonic Motion Demonstrator

Relation between circular motion and linear displacement on overhead projector.

What It Shows

Uniform circular motion can be shown to be the superposition of simple harmonic motions in two mutually perpendicular directions. This apparatus gives the audience a visual display of how one dimensional simple harmonic motion varies in unison with circular motion.

...

Read more about Simple Harmonic Motion Demonstrator
Frahm Resonance Gyroscope

Vibrational resonances of metal reeds are excited by a spinning gyro as it slows down.

How it works

The Frahm resonance gyroscope is a standard piece of equipment that can be purchased from science supply houses. 1 It consists of a heavy wheel slightly unbalanced, held in a frame to which seven metal reeds are attached, each having a different vibrational frequency. The wheel is set in motion by unwinding a string that has been wrapped around the axle. As the wheel runs down, it sets each reed successively into vibration as its rotational frequency passes through...

Read more about Frahm Resonance Gyroscope
Triboelectric Effects

What it shows:

As long ago as 600 B.C., the Greek philosopher Thales knew that amber, when rubbed, would attract bits of paper and other light objects. Many other substances have this same property and can be electrified by rubbing. The kind of electrification (positive or negative) depends on the substances used.

...

Read more about Triboelectric Effects
Conductivity of Glass

Insulating glass becomes a conductor of electricity when heated red-hot with a blowtorch. (m) (T+)

What it Shows

At room temerature, glass is almost as good an insulator as hard rubber. When heated to 1000 K, however, glass has a resistivity of less than 107 ohm-meters (Purcell1 fig. 4.8 pp 140). As glass becomes molten the once immobile ions are able to drift further between collisions under the influence of an applied electric field (Purcell pp 139). We can dramatically observe this decreased resistance using a blowtorch and a few incandescent...

Read more about Conductivity of Glass
Hand Cranked AC Generator

Observe the induced current in a gimbaled coil as it rotates in Earth's magnetic field.

What it Shows

A changing magnetic flux through a circular coil of wire induces a current in the wire. By spinning a circular coil of wire at constant frequency and measuring the induced voltage across its ends we can find the local direction and magnitude of the Earth's magnetic field as it passes through the coil. The commutators of the coil are configured to produce an alternating current.

...

Read more about Hand Cranked AC Generator
The Barkhausen Effect

What it shows:

The magnetization of a ferromagnetic substance occurs in little jumps as the magnetic moments of small bunches of atoms, called domains, align themselves with the external field. We can actually "hear" the switching of these domains by amplifying the currents induced in a coil that surround the ferromagnetic material.

How it works:

We use two 10mH coils mounted back-to-back to cut out AC noise. The samples, listed in Fig.1 are in wire form, about 3-5cm in length and pushed through corks so they can sit...

Read more about The Barkhausen Effect
Infra-Red Projector

What it shows:

Like visible light, invisible infra-red radiation can be refracted by lenses to produce an image on a screen. Indeed, a slide projector designed for visible light is used as the imaging device; a heat- sensitive screen makes the invisible IR image visible.

How it works:

Our IR source is a 1000 watt "lantern slide" projector 1 from which we have removed the special heat-absorbing glass in the condenser assembly. The slide to be imaged is some kind of lettering, like the name of the course (Science A-29...

Read more about Infra-Red Projector
Hotplate Mirage

What it shows:

A beam of light is distorted due to turbulent convection currents in air. This is a model of atmospheric distortion that affects seeing conditions in ground based optical and infrared astronomy.

How it works:

Turbulent air is provided by an electric stove ring, that heats the air above it as the warm earth dues to air sitting above it. The turbulent currents set up alter the refractive index of the air in a disordered and rapidly changing way. Light from a point source passing through these conditions is blurred...

Read more about Hotplate Mirage

Pages