Resonant Fountain Tube

Standing sound waves in a glass pipe are made evident by the fountains of kerosene inside the pipe.

What it shows:

The air inside a very large glass pipe (partially filled with a fluid) is acoustically excited into a standing wave. Once resonating, the locations of the velocity antinodes inside the pipe are dramatically made evident by the vigorous agitation of the fluid, resulting in fabulous foaming frothing fountains of fluid. The velocity of sound can also be determined by noting the resonance frequency and measuring the distance between antinodes.

Eddy Currents at LN2 Temperature

What it shows:

A rectangular block of copper (measuring 6"×6"×2"), offers VERY little resistance to eddy currents generated by dragging a magnet across its surface. Thus the Lorentz force between the eddy currents and magnetic field is quite strong and you can feel a sizable drag force. Dropping a magnet onto the surface likewise produces a sizable Lorentz force, as evidenced by the damped motion of the magnet's fall. The effects are quite dramatic at liquid nitrogen temperature.

Sugar Syrups

What it shows:

Certain materials (sugar in this experiment) are optically active because the molecules themselves have a twist in them. When linearly polarized light passes through an optically active material, its direction of polarization is rotated. The angle of rotation depends on the thickness of the material and the wavelength of the light.