Astronomy and Astrophysics

Sodium Absorption

What it shows:

Sodium 'D' line absorption showing up as a black line in the yellow of a continuous spectrum. Good as a simulation of the sodium portion of the Fraunhoffer absorption spectrum caused by atoms in the solar atmosphere; it does not however, resolve the 5890/5896Å doublet.

How it works:

As in the Sun, which is a black body source surrounded by an atmosphere of cooler gas containing many heavy atoms including sodium, we can set up a black body spectrum using a slide projector, and provide a hot sodium 'atmosphere' using...

Read more about Sodium Absorption
Spherical Blackboard

What it shows:

You can use a spherical blackboard for many things, including the teaching of geographical coordinates, as a model for a closed Universe, or simply as a mathematical shape.

In the non-Euclidean geometry of the sphere, a circle will have a circumference greater than 2πr and an area greater than πr2. A triangle’s angles will add to more than 180°, and two parallel lines, called Great Circles, will converge.

A Universe with a density parameter Ω greater than unity will have too much mass to overcome its own gravitational...

Read more about Spherical Blackboard
Inflating Universe

What it shows:

According to present accepted theory the Universe came into existence some 17 billion years ago as a Big Bang and is currently expanding. You can model the expansion of space in two dimensions using a balloon.

inflating universe

How it works...

Read more about Inflating Universe
Saddle Shape Universe

Curved space segment for open universe geometry.

What it shows:

Whether the Universe continues to expand forever or will collapse back in upon itself depends upon the amount of matter it contains. For a density parameter Ω less than unity the Universe will not have enough mass to collapse and will be in a state of perpetual expansion. In general relativity, the curvature of space is dependent upon the density of the Universe, and for Ω<1 the curvature is negative or hyperbolic. It can be represented two dimensionally (see Comments) by a saddle...

Read more about Saddle Shape Universe
Gravitational Field Surface

1m diameter rubber sheet acts as curved space for ball bearing masses.

What it shows:

In general relativity, gravity is replaced by a curved space geometry, where the curvature is determined by the presence and distribution of matter. Objects move in straight lines, or along geodesics, but because of the curvature of space, their paths will simulate the effect of gravitational attraction. This demo gives a two dimensional view of warped space.

How it works:

In this 2-D analog, a 1 meter diameter piece of dental dam forms a...

Read more about Gravitational Field Surface
Gravitational Lens

Laser and plastic lens with curvature to simulate bending of light by massive object.

What it shows:

Gravitational lensing is caused by the bending of light rays by the gravitational field of an intervening object. The effect is seen with the Sun, but is most spectacular when a whole galaxy acts as a lens to a cosmologically distant object, such as a quasar. Depending on the geometry of the alignment and the structure of the lensing galaxy, the image of the quasar is distorted into two or more distinct images, sweeping arcs or a complete ring. Here we model...

Read more about Gravitational Lens
Bouncing Photon

A photon (modeled by a bouncing ping-pong ball) is observed from two reference frames and provides the motivation for time dilation.

Relativity Train

What it shows:

The Relativity Train is a realization of the famous Einstein gedanken experiments involving traveling trains carrying clocks and meter sticks. The demonstration is used to show how the preservation of the postulated constancy of physical laws and the speed of light in all inertial frames requires length contraction and time dilation in the train frame relative to the lab frame of reference. The demonstration is, of course, not a real experiment but rather a visual means of showing (without using any equations) how length contraction and time dilation are...

Read more about Relativity Train
Potential Well Orbiter

Orbital motion simulated by ball rolling on wooden potential well.

What it shows:

Motion in a central potential is demonstrated by a ball rolling on a circular 1/r curved surface.

How it works:

The 1/r potential well simulates the gravitational potential surrounding a point mass; a ball bearing moving in this potential follows a parabolic or elliptical orbit depending upon its initial trajectory and velocity. As it loses energy due to friction, the orbit decays and the ball spirals towards the centre of the well. You could...

Read more about Potential Well Orbiter
Collisional Broadening

What it shows:

Perturbation by colliding atoms in a high pressure gas result in the broadening of emission and absorption lines. This is clearly seen in the sodium D (589nm and 589.6nm) lines of a high pressure sodium lamp.

The broadening in frequency width is dependent upon the separation of the perturbing particles (Novotny 1973) by

∆ν ∝ r-n

With n=2 the broadening is due to the coulomb field of an ionized atom or electron; this is the linear Stark effect. With n=3 the interaction is between neutral atoms of the same type; this...

Read more about Collisional Broadening
Spectrum Piano

The visible part of the electromagnetic spectrum is represented by less than an octave of the keys; UV, IR, and microwaves are also indicated.

What it shows:

The keys of a piano are used to represent the electromagnetic spectrum, illustrating the narrow range of frequencies that constitute the portion visible to human sight.

How it works:

An old piano 1 with its center octave of keys (C4=261.6Hz to C5=523.3Hz) colored for the visible spectrum (the seven colors spread to...

Read more about Spectrum Piano
Doppler Tuning Forks

Run towards the blackboard carrying a tuning fork...

What it shows:

Waves emitted from a moving source are Doppler shifted to higher frequencies when moving towards the observer, and shifted to lower frequencies when moving away from the observer. In this situation the source is moving away from you, but the raised frequency sound is reflected back interfering and causing beating.

How it works:

All you need is a tuning fork (say 896Hz, see comments), a reflective surface like a blackboard, and plenty of room to take a run at...

Read more about Doppler Tuning Forks
Doppler Whirler

A high-pitched alarm on the end of a rope is whirled about the head.

What it shows:

Doppler shift of sound emitted by an object moving in a circular orbit, with the pitch clearly changing as the object move towards, away or perpendicular to the line of the observer. Useful as an analogy to the redshift and blueshift of spectral lines from a rotating astronomical source such as a planet or binary star system.

How it works:

We have a Powerhorn™ Security System buzzer attached to a 1.5m length of nylon cord. Swing it in a...

Read more about Doppler Whirler
Doppler Turntable

Two speakers, one at each end of rotating platform; beating due to frequency shift of speakers travelling in opposite directions.

What it shows:

Doppler shifting of sound to higher frequencies occurs when a source is moving towards the observer, and shifted to lower frequencies when the source is moving away. Here two sources emitting the same frequency when stationary rotate on a turntable. With one source moving towards you and one away, the Doppler shifted waves interfere to create beats.

How it works:

Two 1.5W 8Ω...

Read more about Doppler Turntable