[★★]

Vector Sum of Forces

Magnetic blackboard mechanics with spring balances and weights.

What it shows:

Solve a problem in composition of concurrent forces by graphical or trigonometric means.

How it works:

The blackboard mechanics set1 includes apparatus to demonstrate most of the common laws of statics and some dynamics. The pieces of apparatus are held on the blackboard by magnets and, although not large, are fairly visible in the lecture hall. A booklet with a few dozen suggested demonstration experiments is included in the set.
...

Read more about Vector Sum of Forces
Siphon

What it shows:

A siphon is a device that allows the transfer of a fluid from one reservoir to a second at a lower level even though the first part of the journey is up-hill.

How it works:

A siphon is effectively an inverted U-tube with unequal length tubes. The asymmetry means that there is a pressure difference between the ends;

at the upper reservoir: p1 = P - ρgh1
at the lower reservoir: p2 = P - ρgh2
(where P = atmospheric pressure)

so p1 > p2 if h2 > h...

Read more about Siphon
Bird on a High-Voltage Transmission Line

What it shows:

Why doesn't a bird sitting on a high-voltage wire get electrocuted? This demonstration addresses that question and serves as a model of the situation.

How it works:

The important concept conveyed is that there needs to be a voltage difference across a conducting medium for current to flow through the medium. In this situation the conducting medium is a bird sitting on a high-voltage wire. The voltage on the wire is the voltage of the whole length of wire with respect to the ground. Although the bird on the...

Read more about Bird on a High-Voltage Transmission Line
Frustrated Total Internal Reflection

What it shows:

In quantum mechanics, it is possible for a particle to tunnel through a potential barrier because its wave function has a small but finite value in the classically forbidden region. Here we use FTIR as an optical analog of this quantum mechanical phenomenon.

How it works:

A 45°-90° prism will deflect a beam of light by total internal reflection. When two such prisms are sandwiched back-to-back and pressed together, the air-glass interface can be made to vanish and the beam then propagates onward undisturbed. This transition, from...

Read more about Frustrated Total Internal Reflection
Change of Volume with State

CO2 and He balloons in liquid nitrogen.

What it shows:

Cooling a gas causes a proportional decrease in volume with the drop in absolute temperature. A gas such as helium, which remains close to ideal at low temperatures, shows a four-fold decrease in volume when taken from room temperature 330K to liquid nitrogen temperature, 77K. Carbon dioxide however, sublimes at 194.5K, so is solid at 77K. Oxygen liquefies at 90K (S.T.P.). A qualitative demonstration of these effects can be shown with gas filled balloons.

How it works:...

Read more about Change of Volume with State
Greenhouse Bottles

Simulation of the greenhouse effect with silvered and unsilvered glass bottles.

What it shows:

Heat energy readily escapes from a clear glass flask, but is trapped inside a silvered flask which rapidly heats up.

How it works:

Two 2L flat bottom Florence flasks, one clear and one silvered (see reference), have identical 10Ω, 25W resistors placed inside them connected in series to a DC supply 1 These resistors act as good sources of infrared radiation. The clear flask readily transmits the IR, but the silvered...

Read more about Greenhouse Bottles
Loaded Beam

loaded beamsBeam supported at ends with platform scales and toy truck as load to demonstrate moment arms.

What it shows:

The concept of moment arms is exemplified by this model of a truck on a bridge.

How it works...

Read more about Loaded Beam
Pascal's Paradox

What it shows:

Three containers are filled with water to the same depth, and each has the same base surface area (see figure 1). Since the pressure and area are the same in each container, the force should be the same (pressure = force/area)....

Read more about Pascal's Paradox
TV Image Deflection

Image on black and white television is deflected by a magnet, not unlike the Maltese Cross.

What it shows:
The television is basically a sophisticated cathode ray tube. The electron beam in the TV is influenced by magnetic fields in the same way as in Crookes tubes.

How it works:
The image on a black & white TV is formed by a single electron gun scanning the screen. Holding a strong magnet to the side or in front of the screen deflects the beam from its regular sweep pattern, distorting the image.

Setting...

Read more about TV Image Deflection
Edge Diffraction

What it shows:

A point light source will produce seemingly sharp shadows which turn out to be not at all sharp when viewed under magnification. Narrow interference bands are seen within the shadow of a straight edge while more complicated shapes yield more complicated interference bands and striations.

...

Read more about Edge Diffraction

Pages