[★★★★]

Shattering Wineglass

Large speaker with signal generator/amplifier destroys a wineglass; stroboscopic illumination shows vibration mode.

What it shows:

Sound waves of the right frequency are used to excite a wineglass in one or two of its normal modes of vibration. Stroboscopic illumination makes it possible to actually see the vibrations in apparent slow motion. When the intensity of the sound is increased, the large undulations of the glass exceed its elastic limit and cause it to shatter. This can be done in the fundamental or next higher normal mode of vibration ... a beautiful and dramatic...

Read more about Shattering Wineglass
Uranium Block

What it shows:

This block of uranium is of great historical significance -- it is a remnant of the WWII German Atomic Bomb Project. It was brought to Harvard by Prof. Edwin C. Kemble, Physics Dept. Chairman and also Deputy Science Director of the ALSOS mission in 1945. The American ALSOS mission was an intelligence effort to discover the extent of German progress toward atomic weapon development and its ultimate purpose was to secure all the uranium ore the Germans had confiscated during the war and finally close the books on the German program to build an atom...

Read more about Uranium Block
Cannon Ball Boat Puzzler

What it shows

Does the level of the ocean rise or fall when a cannon ball is tossed overboard? A question of displacement.

How it works

A difficult effect to see at sea, but it becomes clear by taking some parameters to extremes. Reducing the ocean to 12L in volume, and the boat to practically no mass by using a plastic bowl, a cannon ball of 1kg mass suddenly becomes substantial. With the cannon ball in the boat, its weight is distributed throughout the boat; the lowered density increases the amount of water displaced (by the fraction of the boat submerged), raising...

Read more about Cannon Ball Boat Puzzler
Barton's Pendulum

Ten coupled pendulums of different lengths; shows resonance and phase.

What it shows:

All objects have a natural frequency of vibration or resonant frequency. If you force a system—in this case a set of pendulums—to oscillate, you get a maximum transfer of energy, i.e. maximum amplitude imparted, when the driving frequency equals the resonant frequency of the driven system. The phase relationship between the driver and driven oscillator is also related by their relative frequencies of oscillation.

How it works:

Barton's Pendulum...

Read more about Barton's Pendulum
Hertz Resonator

What it shows:

The transmission and detection of radio frequency electromagnetic radiation by use of LC oscillator circuits recreates the discovery by Hertz of a method to generate and detect electromagnetic waves.

How it works:

The core of the apparatus (figure 1) is a series LRC circuit (the R provided by the circuit resistance). The inductor L is a 1m diameter loop made of 1 inch copper tubing which also serves as the radiating antenna. A transformer 1 supplies 15kV to charge up the capacitor 2 until...

Read more about Hertz Resonator
Nuclear Fission

What it shows:

In a nuclear reactor or atom bomb, a fissile material such as 235U can capture a neutron. The resulting unstable nucleus fragments into two smaller nuclei, releasing energy and several neutrons (a typical equation is given below). Each of these neutrons can in turn cause the fission of a 235U nucleus. If there is above a critical concentration of fissile material, this chain reaction will continue unaided, and if unregulated can result in a very loud bang.

n + 235U → 236U* → 141Ba + 92Kr + 3n

... Read more about Nuclear Fission
Telescope Resolution

What it shows

A telescope (with video output) at the front of the lecture hall is focused on two point light sources at the rear of the hall. Although the light sources are only 1/2 mm apart, they are readily resolved. The Rayleigh limit of resolution can be clearly shown by reducing the telescope aperture to the point where the two light sources can barely be resolved, similar to the following images (from: Cagnet/Francon/Thrierr, Atlas of Optical Phenomena). At the Rayleigh limit the centers of both point sources coincide with the the first minimum of the other source....

Read more about Telescope Resolution
Chladni Plates

Accumulation of sand at nodes of vibrating plate reveals resonance patterns.

What It Shows

A Chladni plate consists of a flat sheet of metal, usually circular or square, mounted on a central stalk to a sturdy base. When the plate is oscillating in a particular mode of vibration, the nodes and antinodes that are set up form complex but symmetrical patterns over its surface. The positions of these nodes and antinodes can be seen by sprinkling sand upon the plates; the sand will vibrate away from the antinodes and gather at the nodes.

...

Read more about Chladni Plates

Pages