[★★★]

Dinner Table

Sliding tablecloth out from under posh dinner setting.

What it shows:

A body will remain at rest unless a force acts upon it. So too will your best china remain in place as the table cloth is whipped from under it providing the friction between the cloth and table setting is low, and the speed of removal high.

...

Read more about Dinner Table
Double Bubble

What it shows

When two different size soap bubbles are connected together, the smaller diameter bubble will shrink and collapse to blow up the larger diameter bubble. One can use this to demonstrate Laplace's law or the phenomenon of minimizing the surface area of a soap film.

How it works

Laplace's law tells us that the gauge pressure of a spherical membrane is given by 2γ/r, where γ is the surface tension and r is the radius of the sphere.1 For soap bubbles (which have an inside as well as outside surface), the gauge pressure is twice...

Read more about Double Bubble
Refraction of Sound

Balloons filled with helium, CO2, or SF6 act as diverging and converging lenses, respectively.

What it shows:

A balloon, filled with a gas different from air, will refract sound waves. A gas denser than air turns the balloon into a converging lens and a lighter gas makes it a diverging lens. An air-filled balloon has little effect.

How it works:

The refraction phenomenon occurs whenever waves travel from one medium to another in which the velocity of the wave changes. The amount of refraction at...

Read more about Refraction of Sound
RL Time Constant

What it shows:

The growth and decay of current in an RL circuit with a time constant visible in real time.

How it works:

By choosing the values of resistance and inductance, a time constant can be selected with a value in seconds. The time constant τ is given by

τ = L/R

We chose two resistance values, 4.7K and 10K coupled with a 45kH UNILAB 1 induction coil giving time constants of 9.5sec and 4.5sec respectively.

The circuit is set out on a 1.0 × 0.5m plywood board. The actual...

Read more about RL Time Constant
The Barkhausen Effect

What it shows:

The magnetization of a ferromagnetic substance occurs in little jumps as the magnetic moments of small bunches of atoms, called domains, align themselves with the external field. We can actually "hear" the switching of these domains by amplifying the currents induced in a coil that surround the ferromagnetic material.

How it works:

We use two 10mH coils mounted back-to-back to cut out AC noise. The samples, listed in Fig.1 are in wire form, about 3-5cm in length and pushed through corks so they can sit...

Read more about The Barkhausen Effect
Brownian Motion of Smoke Particles

Smoke cell under microscope; smoke particles seen bombarded by air molecules.

What it Shows

Brownian motion shows direct evidence of the incessant motion of matter due to thermal energy. Here we use the random bombardment of smoke particles by air molecules.

How it Works

The CENCO Brownian Movement Apparatus consists of a metal chamber with a glass viewing window on top and a lens on one side (see figure 1). Smoke from a piece of smoldering rope or match is drawn into the chamber through an inlet tube by squeezing the rubber bulb....

Read more about Brownian Motion of Smoke Particles
Precipitation of Silver Chloride

Sodium chloride solution is added to silver nitrate solution and a white precipitate of silver chloride is instantly formed.

The silver nitrate solution is around 0.1M, and the sodium chloride solution around 0.5M. Pour the sodium chloride sol'n into the silver nitrate to avoid leaving traces of silver nitrate in the empty beaker.

Wear safety glasses and gloves to prepare and perform this demonstration.

Pages