Nitrogen Phase Change

Liquid nitrogen is pumped on and freezes into a sponge of solid nitrogen.

The liquid nitrogen is in a 600 or 800 ml beaker under a shielded bell jar on top of the red vacuum cart. A cold trap is not necessary if only nitrogen is being pumped on.

It is important that the beaker of liquid nitrogen not have frozen water vapor on its side, as the view is impaired. A camera is zoomed in on the beaker, which is in a thick glass bell jar and an acrylic tube shield.

With the pump running and the bell jar vent open, pour the nitrogen and cover the beaker with bell jar. Open up...

Read more about Nitrogen Phase Change
Coriolis Force

What it shows:

The Coriolis force is a pseudo force existing in a frame that rotates with constant angular velocity to a reference frame. It acts on a body moving in the rotating frame to deflect its motion sideways. Here the audience sits in the reference frame, while two volunteers on a rotating platform experience the coriolis force by trying to basket a volleyball.

Read more about Coriolis Force
Standing Wave on Long Spring

Obtain as many harmonics as your arm can handle.

What it shows:

Generation of a standing wave by reflection from a fixed end.

How it works:

A two person demonstration using a 2m (2cm diameter) steel spring. 1 One party acts as the fixed end, standing holding the spring rigidly at chest height. The other sends the pulses down the spring by vigorous up-and-down movements. The frequency is adjusted to set up a standing wave from the fundamental up to whatever you're capable of (see Comments). Amplitudes of...

Read more about Standing Wave on Long Spring
Electric Force on Neutral Object

A neutral conductor (or dielectric) experiences a torque, but no net force, when placed in a uniform electric field. It does experience a net force in a non-uniform field.

What it shows:

When an electrically neutral object is suspended in a uniform electric field, it becomes polarized. The electric force on the separated charges produces a torque about the suspension point and the object rotates. There is no translational motion—the object simply aligns itself with the electric field.

When an electrically neutral object is...

Read more about Electric Force on Neutral Object
Eddy Currents at LN2 Temperature

What it shows:

A rectangular block of copper (measuring 6"×6"×2"), offers VERY little resistance to eddy currents generated by dragging a magnet across its surface. Thus the Lorentz force between the eddy currents and magnetic field is quite strong and you can feel a sizable drag force. Dropping a magnet onto the surface likewise produces a sizable Lorentz force, as evidenced by the damped motion of the magnet's fall. The effects are quite dramatic at liquid nitrogen temperature.

How it works:

Copper has a positive temperature...

Read more about Eddy Currents at LN2 Temperature
Fraunhofer Absorption

What it shows:

Sodium 'D' line absorption showing up as a black line in the yellow of a continuous spectrum. Good as a simulation of the sodium portion of the Fraunhoffer absorption spectrum caused by atoms in the solar atmosphere; it does not however, resolve the 5890/5896Å doublet.

How it works:

As in the Sun, which is a black body source surrounded by an atmosphere of cooler gas containing many heavy atoms including sodium, we can set up a black body spectrum using a slide projector, and provide a hot sodium 'atmosphere' using...

Read more about Fraunhofer Absorption
Critical Opalescence

What it shows:

The demonstration shows density fluctuations in liquids. These fluctuations are particularly spectacular near critical points. A binary fluid mixture of methanol (29% by weight) and cyclohexane (71%) becomes opalescent when heated up to its critical temperature (about 45˚C) ... the fluids become miscible above this temperature.

How it works:

The two fluids are sealed in a special vial, able to withstand elevated pressure. The fluids are immiscible at room temperature. When brought up to 45˚C, they become miscible...

Read more about Critical Opalescence
Centrifugal Eggbeater

Spinning frame that demonstrates equatorial bulge (oblateness).

What it shows:

The rotation of a planet about its axis causes its equator to bulge due to the "centrifugal force" acting on its mass. Here a spinning wire frame simulates the effect.

How it works:

Planets are actually oblate spheroids rather than spheres due to their rotation. This device consists of two spring metal rings mounted on a metal axis. The north pole is free to slide so that, as the frame spins, the hoops flatten and the equator bulges. The axis is...

Read more about Centrifugal Eggbeater