[M]

Eddy Current Damping

What it shows:

A sheet of aluminum falls slowly between the poles of a magnet because induced currents in the sheet set up magnetic fields which oppose the motion.

How it works:

As the aluminum sheet falls between the poles of the magnet, eddy currents are induced in the metal. These currents set up their own magnetic fields, which through Lenz's law oppose the change that caused them. As the cause is gravity pulling the sheet to Earth, the sheet decelerates as it passes between the poles of the magnet, only to accelerate again...

Read more about Eddy Current Damping
Hotplate Mirage

What it shows:

A beam of light is distorted due to turbulent convection currents in air. This is a model of atmospheric distortion that affects seeing conditions in ground based optical and infrared astronomy.

How it works:

Turbulent air is provided by an electric stove ring, that heats the air above it as the warm earth dues to air sitting above it. The turbulent currents set up alter the refractive index of the air in a disordered and rapidly changing way. Light from a point source passing through these conditions is blurred...

Read more about Hotplate Mirage
Tether-ball Catastrophe

What it shows:

An accelerated electric charge radiates energy. So according to classical physics, an electron in orbit about an atomic nucleus should emit electromagnetic radiation by virtue of its orbital motion. As it radiates energy, the radius of its orbit decreases. The electron should spiral into the nucleus amidst a burst of radiation in about 10-16 seconds.

...

Read more about Tether-ball Catastrophe
β-Ray Deflection

What it shows:

β-rays emanating from a radioactive isotope are deflected from their straight line paths by a magnetic field.

beta particle

How it works:

90Sr/90Y, a "pure" beta-minus source, emits a continuous spectrum of...

Read more about β-Ray Deflection
Stonehenge

Static model of site; can be used with light source to simulate a mid-summer's morning.

What it shows:

1:50 scale model of the Stonehenge site with the positions of Sun and Moon on important dates marked. It can be used with a light show to reproduce Sunrise on Midsummer's morning, June 21.

How it works:

The Stonehenge site consists of the sarsen circle of 30 megaliths capped with 30 lintels. Within this circle is a horseshoe pattern of five trilithons. 80m north-east of the circle's center is the Heel Stone; it is the...

Read more about Stonehenge
Specific Heats of Oil and Water

A volunteer puts her hands in oil and water in large beakers on thermostated hot plates, at about 60°C. The water beaker hand is removed almost instantly. The oil beaker hand can remain indefinitely.

The heat capacity of oil is about half that of water. Oil is thought of as hotter because it can be heated to higher temperatures than boiling water, but at the same temperature, water moves more heat into your hand than oil does.

Chaotic Waterwheel

What it Shows

We start with a vertical wheel—like a Ferris Wheel, but with a diameter just under 1 meter—in neutral equilibrium and free to rotate in either direction. From the ends of each of the eight spokes hang small buckets with drainage holes cut out of the bottom. Fixed directly above the center of the wheel is a faucet connected to a pump.

...
Read more about Chaotic Waterwheel
Tension Puzzler

What It Shows

The two ends of a dial-type spring balance are each connected to strings which run over pulleys. With equal weights attached to the ends of the strings, the spring balance indicates the value of one of the weights.

How It Works

The demonstration is presented to the class as a puzzler: the spring balance is turned around so that the class can't see the dial. Students are invited to guess what it is reading. Invariably they guess the sum of the two weights. The lecturer then turns the face of the dial gauge around showing them the error of...

Read more about Tension Puzzler
Atwood's Machine

Combinations of weights suspended over pulley to show that asymmetry causes acceleration.

atwood's machine

Image on the left, of a lightweight plastic pulley with balanced 50 g brass weights, and on the right, the pulley in motion as the unbalanced weights accelerate. 

Pages