[M]

Brownian Motion of Latex Spheres

“Under the microscope one, to some extent, immediately sees a part of thermal energy in the form of mechanical energy of the moving particles.” —A. Einstein 1915

What it Shows

Tiny latex spheres in water, viewed under a microscope, undergo a kind of random jiggling motion called Brownian motion—named after the botanist Robert Brown, who observed this kind of motion in 1827 when looking at tiny pollen grains. The spheres are all 1.054 micron in diameter. Each particle can be seen...

Read more about Brownian Motion of Latex Spheres
Center of Mass

Irregular lamina with marked center-of-mass tossed in air.

What it shows:

The center of gravity fixed in (or outside) the object always orients itself with minimum potential energy on a vertical line below the support point. When an irregular shape is thrown into the air, it is seen to rotate about its marked center of gravity or center of mass (COM).

How it works:

We have several irregular lamina to suspend and/or throw in the air. They are (1) an amoeba shaped piece of masonite pegboard, (2) a cut-out map of the U.S. glued...

Read more about Center of Mass
Inertia of Rest

Concrete block smashed on lecturer's chest with sledge hammer.

What it shows:

The lecturer (or someone else) lies on a bed-of-nails without discomfort, thus demonstrating the concept of pressure, which is the force per unit area. For added drama the person is sandwiched between two beds of nails with the added weight of a cinder block on top. The cinder block can be broken with a sledge hammer.

How it works:

The forces (weight of the body, cinder block, etc.) are distributed over the total area of all the nail...

Read more about Inertia of Rest
Doppler Whirler

A high-pitched alarm on the end of a rope is whirled about the head.

What it shows:

Doppler shift of sound emitted by an object moving in a circular orbit, with the pitch clearly changing as the object move towards, away or perpendicular to the line of the observer. Useful as an analogy to the redshift and blueshift of spectral lines from a rotating astronomical source such as a planet or binary star system.

How it works:

We have a Powerhorn™ Security System buzzer attached to a 1.5m length of nylon cord. Swing it in a...

Read more about Doppler Whirler
Benjamin Franklin's Thunder House

A replica of Franklin's Thunder House demonstating the efficacy of his invention—the lightning rod. The class will get a charge out of this one.

thunder house

Hotplate Mirage

What it shows:

A beam of light is distorted due to turbulent convection currents in air. This is a model of atmospheric distortion that affects seeing conditions in ground based optical and infrared astronomy.

How it works:

Turbulent air is provided by an electric stove ring, that heats the air above it as the warm earth dues to air sitting above it. The turbulent currents set up alter the refractive index of the air in a disordered and rapidly changing way. Light from a point source passing through these conditions is blurred...

Read more about Hotplate Mirage

Pages