What it shows:

The effect of length, tension, diameter, and kind of material on the pitch of a vibrating string is demonstrated. One may also show the harmonics of a vibrating string.

How it works:

The sonometer is a long hollow wooden box along the top of which are stretched one or more strings rigidly attached to the box at one end, with provision at the other for changing their tension. If there is just one string, it's known as a monochord. The monochord illustration is from John Tyndall's book entitled Sound, (...

Read more about Sonometer
Conductivity of Glass

Insulating glass becomes a conductor of electricity when heated red-hot with a blowtorch. (m) (T+)

What it Shows

At room temerature, glass is almost as good an insulator as hard rubber. When heated to 1000 K, however, glass has a resistivity of less than 107 ohm-meters (Purcell1 fig. 4.8 pp 140). As glass becomes molten the once immobile ions are able to drift further between collisions under the influence of an applied electric field (Purcell pp 139). We can dramatically observe this decreased resistance using a blowtorch and a few incandescent...

Read more about Conductivity of Glass
Paramagnetism of Oxygen

What It Shows

A large magnet with a small cylindrical gap allows a stream of liquid nitrogen to pass over and through. Poured liquid oxygen hangs between the poles in the strong field until it boils away.

How It Works

Pour the liquid nitrogen first, slowly over the pole pieces. The result is nothing but vapor condensation and crackling plexiglas; the liquid does not interact with the large magnetic field.

Next pour the liquid oxygen slowly over the pole pieces, and it collects in the gap between the poles. It might take two or three short pours to get the...

Read more about Paramagnetism of Oxygen
Fishtank TIR

What it shows:

A simple qualitative demonstration of total internal reflection using a laser beam.


How it works:

Using a fish tank suitably doped with a scattering agent (see Setting it Up), a ray of light from a laser beam can probe the water-air...

Read more about Fishtank TIR
Tunneling Analog

What it shows:

In quantum mechanics, it is possible for a particle to tunnel through a potential barrier because its wave function has a small but finite value in the classically forbidden region. Here we use FTIR as an optical analog of this quantum mechanical phenomenon.

How it works:

A 45°-90° prism will deflect a beam of light by total internal reflection. When two such prisms are sandwiched back-to-back and pressed together, the air-glass interface can be made to vanish and the beam then propagates onward undisturbed. This...

Read more about Tunneling Analog
Cloud Chamber

What It Shows

The path of a single charged particle can be made visible in cooled supersaturated air/alcohol vapor.

How It Works

The cloud chamber was developed by C.T.R. Wilson at the turn of the...

Read more about Cloud Chamber
Bag of Lead Shot

Dropping bag containing lead turns gravitational potential energy to heat.

What it shows: 

A demonstration of the conversion of gravitational potential energy to heat energy. A bag of lead shot, repeatedly dropped to the ground, will heat up.

How it works: 

Lead has a sufficiently low specific heat capacity (128 J/kg/K) that a 5kg bag dropped five times from a height of 1.0m onto a rigid floor should increase in temperature by about 2K. The shot is contained in a bank deposit bag with reinforced...

Read more about Bag of Lead Shot
Centrifugal Eggbeater

Spinning frame that demonstrates equatorial bulge (oblateness).

What it shows:

The rotation of a planet about its axis causes its equator to bulge due to the "centrifugal force" acting on its mass. Here a spinning wire frame simulates the effect.

How it works:

Planets are actually oblate spheroids rather than spheres due to their rotation. This device consists of two spring metal rings mounted on a metal axis. The north pole is free to slide so that, as the frame spins, the hoops flatten and the equator bulges. The axis is...

Read more about Centrifugal Eggbeater
Mixing Air and Water

Three clear containers, about 10% full of water, and three immersion blenders are on the bench. Three students volunteer to mix air into water. To one container is added an egg white, and to another is added xantham gum. The students are met with varying levels of success.

Good containers are 1500 ml beakers. The xanthan gum is best hydrated before the demo, and added as a gel to the water. An equal mix of lecithin and xanthan gum also works.