[M]

Standing Wave on Long Spring

Obtain as many harmonics as your arm can handle.

What it shows:

Generation of a standing wave by reflection from a fixed end.

How it works:

A two person demonstration using a 2m (2cm diameter) steel spring. 1 One party acts as the fixed end, standing holding the spring rigidly at chest height. The other sends the pulses down the spring by vigorous up-and-down movements. The frequency is adjusted to set up a standing wave from the fundamental up to whatever you're capable of (see Comments). Amplitudes of...

Read more about Standing Wave on Long Spring
Musical Bottle

A beer bottle becomes a Helmholtz resonator when air is blown across its mouth.

musical bottle

DC Circuit Puzzlers to Ponder

The circuits are built into large wood boards that mount easily onto an easel. The boards are labeled using conventional symbolism. Bulbs and batteries are easily removable--just be careful not to burn your fingers on the hot bulbs!

Parallel vs Series Circuit

Which bulb will be brightest in each circuit?

...

Read more about DC Circuit Puzzlers to Ponder
Electromagnetic Spear

What it shows:

Static 3-D stylized model of an electromagnetic wave, with two sets of sinusoidal fins at 90° representing the E and B fields.

How it works:

The wave packet model consists of a wooden spine with E and B fins of 1cm wooden dowels. A plastic arrowhead gives the spine a direction.

Figure 1. The Spear

...

Read more about Electromagnetic Spear
Frustrated Total Internal Reflection

What it shows:

In quantum mechanics, it is possible for a particle to tunnel through a potential barrier because its wave function has a small but finite value in the classically forbidden region. Here we use FTIR as an optical analog of this quantum mechanical phenomenon.

How it works:

A 45°-90° prism will deflect a beam of light by total internal reflection. When two such prisms are sandwiched back-to-back and pressed together, the air-glass interface can be made to vanish and the beam then propagates onward undisturbed. This transition, from...

Read more about Frustrated Total Internal Reflection
Resonance Radiation/Absorption

What it shows:

For an electron to make a transition from one energy level to a higher one, it needs to absorb a photon who's energy is equal to the difference in the energy levels involved. When jumping back down, it will emit a photon of that same energy. These discrete energy separations are characteristic of the atom involved, and it's what provides an atom with its fingerprint line spectrum. Trying to induce a transition with a photon of different energy just doesn't work.

In this demonstration, light from a sodium source will be absorbed by sodium gas...

Read more about Resonance Radiation/Absorption
Gravitational Lens

Laser and plastic lens with curvature to simulate bending of light by massive object.

What it shows:

Gravitational lensing is caused by the bending of light rays by the gravitational field of an intervening object. The effect is seen with the Sun, but is most spectacular when a whole galaxy acts as a lens to a cosmologically distant object, such as a quasar. Depending on the geometry of the alignment and the structure of the lensing galaxy, the image of the quasar is distorted into two or more distinct images, sweeping arcs or a complete ring. Here we model...

Read more about Gravitational Lens
OHP Kinetic Theory Model

Simulation of molecular motion (Brownian, diffusion, etc.) with ball bearings on shaking table.

What it shows:

Two dimensional simulations of molecular dynamics and crystal structure using ball bearings. It can be used to show qualitatively the dynamics of liquids and gases, and illustrate crystalline forms and dislocations.

How it works:

The molecular dynamics simulator is more commonly known as a shaking table. It consists primarily of a circular shallow walled glass table that is oscillated vertically so as to vibrate and...

Read more about OHP Kinetic Theory Model
Spiral Galaxy

Hand held Plexiglass model of spiral galaxy.

What it shows:

Handy size model of a generic spiral galaxy to show salient features or to describe structure of the Milky Way

How it works:

The model is a 30cm diameter Plexiglass disc 1cm in thickness, with a Ping-pong ball stuck through the center to represent the nucleus. The spiral arms of the galaxy are sprayed on with white paint, and we've stuck on a "you are here" arrow pointing to the outer reaches of one of the spiral arms at the approximate position of the Sun in the...

Read more about Spiral Galaxy

Pages