[t+]

Balancing Forks

Two forks, a cork, and a matchstick balance on the lip of a glass.

What it shows:

Balancing two forks in an unlikely configuration is a lesson in finding the center of mass and stable equilibrium. Nothing too deep here, but it's fun.

...

Read more about Balancing Forks
Refraction of Sound

Balloons filled with helium, CO2, or SF6 act as diverging and converging lenses, respectively.

What it shows:

A balloon, filled with a gas different from air, will refract sound waves. A gas denser than air turns the balloon into a converging lens and a lighter gas makes it a diverging lens. An air-filled balloon has little effect.

How it works:

The refraction phenomenon occurs whenever waves travel from one medium to another in which the velocity of the wave changes. The amount of refraction at...

Read more about Refraction of Sound
Energy Stored in a Capacitor

What it shows:

The electrical energy stored in a capacitor is converted to mechanical work, driving a motor and raising a weight.

How it works:

A motor 1 is mounted atop a 2.5m length of 2×4. As it turns, it raises a 1 lb mass on a string from the ground by wrapping the string around a spindle (figure 1). The motor is driven by the discharge of a 12800µF, 75V capacitor previously charged by a DC power supply. 2 A double throw switch allows a clean change-over from one circuit to the other.
...

Read more about Energy Stored in a Capacitor
Para and Diamagnetism

What it shows: 

The behavior of a substance in a non-uniform magnetic field will depend upon whether it is ferromagnetic, paramagnetic or diamagnetic. Here we test different substances to see how they are influenced by a magnetic field.

How it works: 

We have a collection of samples (listed in table 1) that exhibit well the three magnetic properties. Diamagnetic substances have a negative relative permeability (susceptibility); paramagnetic substances have positive.

Ferromagnetic substances have...

Read more about Para and Diamagnetism
Florence's Rainbow

What it shows:

A beam of white light incident on a giant raindrop (simulated by a water-filled round flask) produces a full rainbow of colors. As with real rainbows, one can also see that the light intensity inside the rainbow is much greater than outside the rainbow.

How it works:

A Florence (round-bottomed) flask is completely filled with water and sealed with a rubber stopper. A Beseler slide projector 1 serves as the sunlight. The light incident on the giant raindrop is refracted, reflected, and refracted once more, back in the direction of the...

Read more about Florence's Rainbow
Syrup Tube

What it shows:

Linearly polarized light, propagating down a long glass tube filled with corn syrup, is made to rotate its direction of polarization by the optically active corn syrup. The intensity of the 90° scattered light varies dramatically, in a periodic manner, along the length of the tube -- the intensity being zero when the dipole radiators oscillate in the line of sight direction, and maximum intensity when they oscillate perpendicular to the line of sight. Scattered light is most intense when the electric field vector is perpendicular to the line of sight.

...

Read more about Syrup Tube
Neutron Activation of Silver

What it shows:

One of the more important discoveries in modern physics is the production of isotopes (both radioactive and stable) by the capture of neutrons. 1 In this experiment the bombardment of silver by thermalized neutrons produces short lived radioactive isotopes of silver whose half lives can readily be measured. It can also be shown that bombardment by fast neutrons does not induce radioactivity because of the extremely low neutron cross sections involved. Using a Geiger counter in conjunction with a multichannel analyzer in the MCS (...

Read more about Neutron Activation of Silver
Sodium Absorption

What it shows:

Sodium 'D' line absorption showing up as a black line in the yellow of a continuous spectrum. Good as a simulation of the sodium portion of the Fraunhoffer absorption spectrum caused by atoms in the solar atmosphere; it does not however, resolve the 5890/5896Å doublet.

...
Read more about Sodium Absorption

Pages