[t+]

Walk-In Faraday Cage

What it shows:

A lecturer's faith in the principle that an electric field cannot exist inside a charged conductor is put to the test using a Faraday cage that is large enough to sit in.

How it works:

The lecturer (or some volunteer) climbs the three steps and sits upon a plain wooden chair. Their assistant pulls the mesh door closed and fastens it. A Van de Graaff, whose dome is in contact with the cage, begins to charge itself and the cage up to a high voltage. The person inside is oblivious to the large amount of charge now...

Read more about Walk-In Faraday Cage
Hero's Shortest Path

What it shows:

Hero's Principle states that light undergoing a reflection from a plane surface will follow the path of least distance. Here is a mechanical analog showing that when the angle of incidence equals the angle of reflection, the path length is minimized.

How it works:

The light path is represented by a 2m length of nylon rope that runs from a fixed end, 'reflects' around a pulley, back up to a second pulley (figure 1). The surplus rope is held taught by a 1kg mass. The pulleys, 6cm in diameter are free to move...

Read more about Hero's Shortest Path
α, β, γ Penetration and Shielding

What it Shows

The interactions of the various radiations with matter are unique and determine their penetrability through matter and, consequently, the type and amount of shielding needed for radiation protection. Being electrically neutral, the interaction of gamma rays with matter is a statistical process and depends on the nature of the absorber as well as the energy of the gamma. There is always a finite probability for a gamma to penetrate a given thickness of absorbing material and so, unlike the charged particulate radiations which have a maximum range in the absorber...

Read more about α, β, γ Penetration and Shielding
Everyday objects at low temperature

What it shows:

Mechanical properties of some materials change dramatically with temperature. These changes have entertaining effects on everyday objects by taking them from room temperature 300K to the temperature of liquid nitrogen 77K.

How it works:

Place your everyday objects in a dewar of liquid nitrogen for several minutes (at least until the LN2 stops boiling). Some examples to use:

1. Rubber gloves freeze solid and shatter on impact with floor.
2. Use a banana to hammer a nail into wood
3. Frozen...

Read more about Everyday objects at low temperature
Reaction of Propane and Oxygen

An oxy-propane torch is lit with just propane, and the flame examined, before oxygen is added, changing the flame character and temperature.

The torch head is gaffed to the table top with enough slack to turn the gas valves. The propane tank and the oxygen tank are on separate dollies. The torch valves are closed, and the tank regulators set so there is about three pounds of pressure behind each gas. (The precise settings of the regulator are a good thing to check out in a practice session before doing this demo.)

With a friction lighter in one hand, open the propane valve on...

Read more about Reaction of Propane and Oxygen
Pendulum and Nose

Faith in the conservation of energy is tested by taking the demonstrator's nose to task.

What it shows:

The principle of conservation of energy ensures that a pendulum released at a particular amplitude will not exceed that amplitude on the return swing. A lecturer's faith in their subject is put to the test using a 50lb (22.7kg) iron ball.

How it works:

Technique is very important here. The best method to employ is to stand with your back against the blackboard with your head also touching the board. This ensures that you don't lean forward after release....

Read more about Pendulum and Nose
Siphon

What it shows:

A siphon is a device that allows the transfer of a fluid from one reservoir to a second at a lower level even though the first part of the journey is up-hill.

How it works:

A siphon is effectively an inverted U-tube with unequal length tubes. The asymmetry means that there is a pressure difference between the ends;

at the upper reservoir: p1 = P - ρgh1
at the lower reservoir: p2 = P - ρgh2
(where P = atmospheric pressure)

so p1 > p2 if h2 > h...

Read more about Siphon

Pages