[t+]

Dinner Table

Sliding tablecloth out from under posh dinner setting.

What it shows:

A body will remain at rest unless a force acts upon it. So too will your best china remain in place as the table cloth is whipped from under it providing the friction between the cloth and table setting is low, and the speed of removal high.

Read more about Dinner Table
Magdeburg Hemispheres

When evacuated, held together by bombardment of atmospheric molecules.

What it shows:

Two brass hemispheres are brought together and evacuated, and are held together by the pressure of the atmosphere.

How it works:

Two brass hemispheres fit together to form an air-tight seal. One has a vacuum pump attachment and stop cock; the completed sphere can evacuated using a vacuum pump under a minute. As atmospheric pressure is 105Nm-2, the 11cm diameter hemispheres are held together by a force of 15000N. Invite members of your...

Read more about Magdeburg Hemispheres
Conductivity of Water

What it shows:

Pure water is an electrical insulator. But provide an ionic compound in the form of salt, and you complete the circuit.

How it works:

A simple circuit with the mains supply connected to a 15W light bulb and two copper sheet electrodes (figure 1). The electrodes are placed in a 1500ml beaker containing distilled water. Distilled water is a very good insulator, with an autoionisation of 1:10-7 (the proportion of molecules in H3O+ + OH- form) it has a resistance of...

Read more about Conductivity of Water
Diamagnetic Levitation

What it shows:

Stable levitation of one magnet by another is usually prohibited by Earnshaw's Theorem, but the introduction of diamagnetic material at special locations can stabilize such levitation. The demonstration is a replica of an experiment described by M.D. Simon and A.K. Geim1 and is pictured in the photograph. The illustration is from their paper.

...

Read more about Diamagnetic Levitation
Hotplate Mirage

What it shows:

A beam of light is distorted due to turbulent convection currents in air. This is a model of atmospheric distortion that affects seeing conditions in ground based optical and infrared astronomy.

How it works:

Turbulent air is provided by an electric stove ring, that heats the air above it as the warm earth dues to air sitting above it. The turbulent currents set up alter the refractive index of the air in a disordered and rapidly changing way. Light from a point source passing through these conditions is blurred...

Read more about Hotplate Mirage
Wien's Displacement Law

Changes in the spectral intensity distribution of a hot tungsten filament are observed as the temperature is varied.

wien

How It Works

A slide projector (Beseler Slide King II) with a 1kW lamp and adjustable lens is plugged into a Variac. The light from the projector passes through an inline...

Read more about Wien's Displacement Law
Gravitational Lens

Laser and plastic lens with curvature to simulate bending of light by massive object.

What it shows:

Gravitational lensing is caused by the bending of light rays by the gravitational field of an intervening object. The effect is seen with the Sun, but is most spectacular when a whole galaxy acts as a lens to a cosmologically distant object, such as a quasar. Depending on the geometry of the alignment and the structure of the lensing galaxy, the image of the quasar is distorted into two or more distinct images, sweeping arcs or a complete ring. Here we model...

Read more about Gravitational Lens
Equatorial Ring

Model of Ptolemy's ring used to measure the length of the year.

What it shows:

This is a model of the ring and method used by Claudius Ptolemy (2nd century A.D., Alexandrian astronomer) to determine the length of a year.

ring

How it works:

The ring is...

Read more about Equatorial Ring

Pages