[t++]

Eddy Current Levitation

What it shows:

It's impossible to magnetically levitate an object with static magnetic fields. However, it's posible to levitate a magnet with another hand-held magnet by taking advantage of eddy currents.

How it works:

A rectangular block of copper (6"×6"×2") is stacked on top of another one (6"×6"×1"). They are separated by 1" plastic spacers. A rectangular bar magnet (2"×2"×½") is placed in the space between them. When a second magnet is lowered from above, the two magnets attact each other. However, rather than "jumping up"...

Read more about Eddy Current Levitation
Single Photon Interference

Wave/particle duality observed in Young's double slit experiment with camera sensitive to individual photons.

What it shows:
In this demonstration we perform the double-slit interference experiment with extremely dim light and show that even when the light intensity is reduced down to several photons/sec, the audience can see the familiar Young's double-slit interference pattern build up over a period of time. This addresses the question of how can single photons interfere with photons that have already gone through the apparatus in the past, or with those that...

Read more about Single Photon Interference
Crystal Growth & Recession

What it shows:

By providing a cold boundary, you can get water to crystalize as advancing needles of ice.

How it works:

This cold boundary can be provided by a petri dish of alcohol. Adding dry ice to this produces an endothermic reaction that lowers the temperature below 0°C. By placing a smaller petri dish containing distilled water within the alcohol dish (figure 1), the water freezes from the outer edge inwards. In front of a "thick" wall of ice shoots a monolayer of needles. The advance or recession can be...

Read more about Crystal Growth & Recession
Cavendish Experiment

Calculation of gravitational constant, with accompanying apparatus model.

What it shows

The gravitational attraction between lead spheres. The data from the demonstration can also be used to calculate the universal gravitational constant G.

gravitational attraction
...

Read more about Cavendish Experiment
Eddy Currents at LN2 Temperature

What it shows:

A rectangular block of copper (measuring 6"×6"×2"), offers VERY little resistance to eddy currents generated by dragging a magnet across its surface. Thus the Lorentz force between the eddy currents and magnetic field is quite strong and you can feel a sizable drag force. Dropping a magnet onto the surface likewise produces a sizable Lorentz force, as evidenced by the damped motion of the magnet's fall. The effects are quite dramatic at liquid nitrogen temperature.

How it works:

Copper has a positive temperature...

Read more about Eddy Currents at LN2 Temperature
Poisson's Spot

Diffraction produces a bright spot where Poisson believed there would be darkness.

Poisson's Spot

What It Shows

Edge diffraction around a 1/8" diameter steel ball bearing results in a visible spot in the center of its shadow. In 1818 this result—to the chagrin of Siméon D. Poisson—...

Read more about Poisson's Spot
Dilatancy of Deformation

What it shows:

When sand in a balloon, just as atoms in a lattice, are close packed, they occupy the least possible volume. Any deformation, even compression, deforms this close-packed arrangement causing an increase in volume.

How it works:

The balloon is filled with sand, and black ink added allowed to percolate down and fill the air gaps. A capillary tube sticking out of the balloon indicates the ink level. When the balloon is squeezed the sand, which had settled down to a closely packed arrangement, is dislocated. Larger gaps...

Read more about Dilatancy of Deformation
Bow and Arrow

Use conservation of energy to predict the height the arrow will reach.

bow and arrow

What it shows:

When the string of a bow and arrow is pulled from equilibrium, the elastic potential energy in the bow is converted to kinetic energy of the arrow when the string is released. When the arrow...

Read more about Bow and Arrow
Paramagnetism of Oxygen

What It Shows

A large magnet with a small cylindrical gap allows a stream of liquid nitrogen to pass over and through. Poured liquid oxygen hangs between the poles in the strong field until it boils away.

How It Works

Pour the liquid nitrogen first, slowly over the pole pieces. The result is nothing but vapor condensation and crackling plexiglas; the liquid does not interact with the large magnetic field.

Next pour the liquid oxygen slowly over the pole pieces, and it collects in the gap between the poles. It might take two or three short pours to get the...

Read more about Paramagnetism of Oxygen
Photoelectric Effect

What it shows:

A direct observation that the photoelectric effect is color (i.e. frequency) dependent and not intensity dependent. We discharge an electroscope using UV radiation after all attempts to discharge it with light of a longer wavelength has failed.

How it works:

An ebonite rod and fur is used to place a negative charge onto a Braun electroscope (figure 1) fitted with a thick zinc plate. Deviation of the electroscope arm from the vertical indicates a net negative charge. Next we hit it with light from a 1000W...

Read more about Photoelectric Effect

Pages