[t]

Tuning Forks

Selection of mounted tuning forks and rubber hammer.

How it works:

Each tuning fork is mounted on a wooden sound box to amplify the sound (they're very difficult to hear without the box). A microphone/preamp/scope setup may be used to visually demonstrate the pure sinusoidal sound wave. Additionally, a frequency analyzer shows a single frequency component (however, if the gain is turned up high, you may also see the frequency components due to the resonances of the sound box or harmonics of the tuning fork if it was whacked too hard). One of the...

Read more about Tuning Forks
Sonometer

What it shows:

The effect of length, tension, diameter, and kind of material on the pitch of a vibrating string is demonstrated. One may also show the harmonics of a vibrating string.

How it works:

The sonometer is a long hollow wooden box along the top of which are stretched one or more strings rigidly attached to the box at one end, with provision at the other for changing their tension. If there is just one string, it's known as a monochord. The monochord illustration is from John Tyndall's book entitled Sound, (...

Read more about Sonometer
Back EMF

What it shows:

A sudden change in current in an inductor - resistor circuit produces a very large back EMF. If that resistance is a bulb, it will shine much brighter during the change than during DC flow.

E = -LdI/dt

How it works:

The circuit consists of a 6V bulb connected in parallel with a 10.5mH inductor coil as in figure 1. With the battery connected, the bulb burns at its rated 6V. Disconnecting the battery sends the applied voltage and hence the current to zero. The rapidly collapsing...

Read more about Back EMF
Double Refraction

What it shows:

A birefringent substance will split unpolarized light into two polarized rays with different refractive indices and different velocities. A crystal of calcite demonstrates this phenomenon.

Double Refraction...

Read more about Double Refraction
Faraday Induction

What it shows:

The mathematical description of electromagnetic induction as formulated by Maxwell and Faraday requires two different sets of equations to calculate the induced voltage, depending on whether the coil is stationary and the magnet moving or vice versa. In fact, as this demonstration shows, the voltage is the same as predicted by the two sets of equations.

How it works:

The apparatus is identical to demonstration Faraday's Law, and is described in detail there. Briefly, it consists of a galvanometer hooked up to a...

Read more about Faraday Induction
Moon Orbit Model

Mechanical model of Earth-Moon orbit around Sun.

What it shows:

A model to demonstrate the precession of the Moon's orbit relative to the ecliptic. It is useful for discussing the conditions necessary for the occurrence of an eclipse.

How it works:

A large aluminum disk represents the plane of the Moon's orbit about the Earth. The disk lies flush with the box surface it sits in; the plane of the box representing the Ecliptic. The Moon's own orbit is inclined at 5° to the ecliptic, and precesses with an 18 year period. You...

Read more about Moon Orbit Model
Bean Buoyancy

What it shows

Objects with a density lower than the fluid that they are submerged in will float; objects with a greater density will sink. This is shown using a brass ball and ping-pong ball of equal size, and a sea of beans.

How it works

500g of navy beans form a rather coarse fluid in a 1.5L glass beaker. Embedded in the beans is a ping pong ball, and sitting on the surface is a brass ball, 4cm in diameter. This fluid needs to have flow 'induced', and this is done by shaking the beaker side to side. The ratio of densities of brass:beans:ping-pong is approximately...

Read more about Bean Buoyancy
Irregular Lamina

center of gravity - center of mass - equilibrium

What it shows:

The center of gravity fixed in (or outside) the object always orients itself with minimum potential energy on a vertical line below the support point. When an irregular shape is thrown into the air, it is seen to rotate about its marked center of gravity or center of mass (COM).

How it works:

We have several irregular lamina to suspend and/or throw in the air. They are (1) an amoeba shaped piece of masonite pegboard, (2) a cut-out map of the U.S. glued...

Read more about Irregular Lamina
Potential Well

Orbital motion simulated by ball rolling on wooden potential well.

What it shows:

Motion in a central potential is demonstrated by a ball rolling on a circular 1/r curved surface.

How it works:

The 1/r potential well simulates the gravitational potential surrounding a point mass; a ball bearing moving in this potential follows a parabolic or elliptical orbit depending upon its initial trajectory and velocity. As it loses energy due to friction, the orbit decays and the ball spirals towards the centre of the well. You could...

Read more about Potential Well

Pages