Presentations

Bird on a High-Voltage Transmission Line

What it shows:

Why doesn't a bird sitting on a high-voltage wire get electrocuted? This demonstration addresses that question and serves as a model of the situation.

How it works:

The important concept conveyed is that there needs to be a voltage difference across a conducting medium for current to flow through the medium. In this situation the conducting medium is a bird sitting on a high-voltage wire. The voltage on the wire is the voltage of the whole length of wire with respect to the ground. Although the bird on the...

Read more about Bird on a High-Voltage Transmission Line
Ring Flinger Lenz's Law

What it shows:

A changing magnetic flux induces a current in a metal ring; the magnetic field due to this current opposes the primary field, repelling the ring and flinging it into the air. That's the simple "hand waving" explanation for the beginner student—a more accurate explanation follows.

How it really works:

The jumping ring is a vivid and popular demonstration of electromagnetic induction and is used to illustrate Faraday's and Lenz's laws. A conducting ring, placed over the ferromagnetic core of a solenoid, may levitate or...

Read more about Ring Flinger Lenz's Law
Color Mixing

What it shows:

All colors can be created from a combination of the three primary colors of red, green and blue. The secondary colors of cyan, magenta and yellow are created from a combination of two primaries, and white light is perceived from the combination of all three.

...

Read more about Color Mixing
Bouncing Light Beam

What it shows:

As a simulation of atmospheric refraction, this demonstration shows the gradual and continuous bending of light due to a gradient in the optical density of the medium. In this case the variable refracting medium is a tank of sugar water with a vertical gradient in the concentration of sugar and a HeNe laser provides the light beam. It can be used as a model of mirage formation (except that the direction of increasing refractive index is in the opposite direction) or even as a representation of the refraction of seismic waves through the Earth's...

Read more about Bouncing Light Beam
Brewster's Angle

What it shows:

When unpolarized light is reflected from a non-metallic surface, the reflected ray is plane polarized parallel to the reflecting surface if

θi + θr = 90°

or

tanθi = n

where θi = incident ray (Brewster's angle), θr = refracted ray, n = refractive index

How it works:

We use a black vinyl sheet 1m×4m as the reflecting surface, which has a Brewster angle of 57°. A theatrical spot lamp 1 is used to give a 50cm circle...

Read more about Brewster's Angle
Electron Diffraction

What it shows:

Louis de Broglie predicted that matter under certain circumstances would exhibit wave-like properties. A proof of this is the repeat of X-ray diffraction experiments using electrons, whose de Broglie wavelengths at high accelerating potentials are similar to X-ray wavelengths. Here we accelerate electrons into crystal targets and get diffraction patterns identical to those from X-ray diffraction.

...

Read more about Electron Diffraction
CRT Paddle Wheel

A beam of cathode rays (electrons) impinging on a paddle wheel cause it to spin and travel down the vacuum tube.

crookes tubes

What it Shows

A paddle wheel is suspended by its axle inside a Crookes tube so that when the paddle vanes spin the entire wheel is free to travel the length of the tube...

Read more about CRT Paddle Wheel
Bouncing Photon

A photon (modeled by a bouncing ping-pong ball) is observed from two reference frames and provides the motivation for time dilation.

Critical Opalescence

What it shows:

The demonstration shows density fluctuations in liquids. These fluctuations are particularly spectacular near critical points. A binary fluid mixture of methanol (29% by weight) and cyclohexane (71%) becomes opalescent when heated up to its critical temperature (about 45˚C) ... the fluids become miscible above this temperature.

How it works:

The two fluids are sealed in a special vial, able to withstand elevated pressure. The fluids are immiscible at room temperature. When brought up to 45˚C, they become miscible...

Read more about Critical Opalescence

Pages