Presentations

High Road, Low Road

Which road is faster? A kinematics concept Puzzler.

high low road

What it shows:

Horizontal and vertical motions are independent of each other.

How it works:

Two balls, starting with the same initial horizontal velocity, take two different paths: the...

Read more about High Road, Low Road
Fakir Physics

The concept of pressure is demonstrated by lying on a bed of nails.

What it shows:

The lecturer (or someone else) lies on a bed-of-nails without discomfort, thus demonstrating the concept of pressure, which is the force per unit area. For added drama the person is sandwiched between two beds of nails with the added weight of a cinder block on top. The cinder block can be broken with a sledge hammer.

figure 1: A supermarket tabloid reports on how macho man pulls off this stunt.
...

Read more about Fakir Physics
Feather and Dime

Falling in an evacuated tube at the same rate.

What it shows:

In the absence of air resistance all bodies, regardless of size or weight, fall with the same acceleration at the same point above the Earth. Here a feather and a dime (see Comments) fall under the influence of gravity in an environment where there is no air to mess things up.

...

Read more about Feather and Dime
Bow and Arrow

Use conservation of energy to predict the height the arrow will reach.

bow and arrow

What it shows:

When the string of a bow and arrow is pulled from equilibrium, the elastic potential energy in the bow is converted to kinetic energy of the arrow when the string is released. When the arrow...

Read more about Bow and Arrow
Hula Hoop Rotational Inertia

What it shows:

A suspended hula hoop has the same period of oscillation as a pendulum whose length is equal to the diameter of the hoop.

How it works:

The parallel-axis theorem allows us to readily deduce the rotational inertia of a hoop about an axis that passes through its circumference and is given by

\(I = I_{cm} + MR^2 = 2MR^2\)

where M is the mass of the hoop and R is its radius. The period of oscillation thus becomes

\(T...

Read more about Hula Hoop Rotational Inertia
Egg Shell Strength

What it shows:

Eggs have a reputation for being quite strong under compressional loads. You won't believe your eyes when you see how strong they actually are — an egg can support a person!

How it works:

An egg shell is a composite material, but primarily calcium carbonate, "nature's ceramic."1 We assume the ultimate compressional strength of the material to be about the same as bone (which is mostly calcium phosphate, but never mind): 170x106 N/m2. The diameter of a "large" chicken egg is about 1.75" and the typical shell...

Read more about Egg Shell Strength
Vortex Tube

What it shows:

James Clerk Maxwell postulated that since heat involves the movement of molecules, it might be possible to separate hot and cold air in a device with the help of a "friendly demon" who would sort out and separate the fast and slow moving molecules of air. The vortex tube is such a device and does exactly that — using compressed air as a power source, it has no mechanical moving parts and produces hot air at one end and cold air at the other.

How it works:

Room temperature compressed air is supplied to the vortex tube...

Read more about Vortex Tube
Chladni Plates

Accumulation of sand at nodes of vibrating plate reveals resonance patterns.

What It Shows

A Chladni plate consists of a flat sheet of metal, usually circular or square, mounted on a central stalk to a sturdy base. When the plate is oscillating in a particular mode of vibration, the nodes and antinodes that are set up form complex but symmetrical patterns over its surface. The positions of these nodes and antinodes can be seen by sprinkling sand upon the plates; the sand will vibrate away from the antinodes and gather at the nodes.

...

Read more about Chladni Plates
Double Sound Source Interference

What it shows:

Two loudspeakers, separated about 1.7 meters emit the same tone of frequency 500 Hz and produce a pattern of constructive and destructive interference.

How it works:

At this frequency, the successive positions of constructive interference (maximum intensities of sound) occur approximately every two meters at a distance of 10 meters (which is roughly the middle of the lecture hall). The separation of maxima would be about 2.3 meters at 440 Hz. One way to make the interference pattern evident to the students is to...

Read more about Double Sound Source Interference
Musical Bottle

A beer bottle becomes a Helmholtz resonator when air is blown across its mouth.

musical bottle

Pages