Presentations

Capillary Action

What it shows:

capillary actionDue to surface tension effects water rises up a narrow bored tube; the rise in height being inversely proportional to the bore's radius.

How it works:

The setup shows the direct comparison between four...

Read more about Capillary Action
Big Chladni Plate

What it shows:

A large square metal plate, supported and harmonically driven at its center, is made to vibrate in any one of its numerous normal modes of vibration. As with the regular Chladni Plates, the two-dimensional standing wave patterns are made visible by sand accumulating along the nodal lines. What is different in this demonstration is that a multitude of resonances (across the entire audio range and lower ultrasonic frequencies) can easily be excited. Being a two-dimensional oscillator, the various resonance frequencies are not simply multiples of the...

Read more about Big Chladni Plate
Refraction of Sound

Balloons filled with helium, CO2, or SF6 act as diverging and converging lenses, respectively.

What it shows:

A balloon, filled with a gas different from air, will refract sound waves. A gas denser than air turns the balloon into a converging lens and a lighter gas makes it a diverging lens. An air-filled balloon has little effect.

How it works:

The refraction phenomenon occurs whenever waves travel from one medium to another in which the velocity of the wave changes. The amount of refraction at...

Read more about Refraction of Sound
Diamagnetic Levitation

What it shows:

Stable levitation of one magnet by another is usually prohibited by Earnshaw's Theorem, but the introduction of diamagnetic material at special locations can stabilize such levitation. The demonstration is a replica of an experiment described by M.D. Simon and A.K. Geim1 and is pictured in the photograph. The illustration is from their paper.

...

Read more about Diamagnetic Levitation
Wheel & Axle Wavefront

wheel & axelWhat it shows:
A mechanical analogy of a wave front consisting of two wheels linked by an axle. It simulates refraction by rolling across a boundary between two surfaces having different rolling friction and thus altered propagation velocities.

...

Read more about Wheel & Axle Wavefront
Edge Diffraction

What it shows:

A point light source will produce seemingly sharp shadows which turn out to be not at all sharp when viewed under magnification. Narrow interference bands are seen within the shadow of a straight edge while more complicated shapes yield more complicated interference bands and striations.

...

Read more about Edge Diffraction

Pages