[★★★★]

Wooden Dowel Wave Machine

Large (20 feet long) Shive wave machine that can clearly show the reflection and transmission of a pulse at the boundary of fast and slow media.

What it shows:

Being so large (20 feet long), transverse traveling waves on this apparatus are easily seen by a large audience. The propagation speed of the waves is much slower than on the Shive Wave Machine, giving the audience time to process what's going on. The apparatus can be used to show three properties of waves: (1) wave speed is inversely proportional to the square root of the medium's inertia, (2) waves traveling from a...

Read more about Wooden Dowel Wave Machine
Shive Wave Machine

Rods attached to metal spine; transverse wave generator shows the reflection of waves free, fixed, terminated and transition boundaries.

What it shows

Mechanical demonstration of transverse standing or traveling waves using the Shive wave machine.

How it works

The Shive wave machine consists of a series of horizontal metal rods 1.25 cm apart coupled by a torsion wire. A pulse can be sent down the machine by displacing the end rods (when doing this by hand, pull down on more than one rod as the connections are delicate and do break). The far...

Read more about Shive Wave Machine
Rotating Saddle

Mechanical analog of a Paul Trap particle confinement—a ball is trapped in a time-varying quadrupole gravitational potential.

How it works:

A large saddle shape (attached to a plywood disk) is mounted on a multi-purpose turntable. The saddle shape is essentially a quadrupole gravitational potential. Rotation of...

Read more about Rotating Saddle
Chladni Plates

Accumulation of sand at nodes of vibrating plate reveals resonance patterns.

What It Shows

A Chladni plate consists of a flat sheet of metal, usually circular or square, mounted on a central stalk to a sturdy base. When the plate is oscillating in a particular mode of vibration, the nodes and antinodes that are set up form complex but symmetrical patterns over its surface. The positions of these nodes and antinodes can be seen by sprinkling sand upon the plates; the sand will vibrate away from the antinodes and gather at the nodes.

...

Read more about Chladni Plates
Barton's Pendulum

Ten coupled pendulums of different lengths; shows resonance and phase.

What it shows:

All objects have a natural frequency of vibration or resonant frequency. If you force a system—in this case a set of pendulums—to oscillate, you get a maximum transfer of energy, i.e. maximum amplitude imparted, when the driving frequency equals the resonant frequency of the driven system. The phase relationship between the driver and driven oscillator is also related by their relative frequencies of oscillation.

How it works:

Barton's Pendulum...

Read more about Barton's Pendulum
Shattering Wineglass

Large speaker with signal generator/amplifier destroys a wineglass; stroboscopic illumination shows vibration mode.

What it shows:

Sound waves of the right frequency are used to excite a wineglass in one or two of its normal modes of vibration. Stroboscopic illumination makes it possible to actually see the vibrations in apparent slow motion. When the intensity of the sound is increased, the large undulations of the glass exceed its elastic limit and cause it to shatter. This can be done in the fundamental or next higher normal mode of vibration ... a beautiful and dramatic...

Read more about Shattering Wineglass
Pendulum Waves

What it shows:

Fifteen uncoupled simple pendulums of monotonically increasing lengths dance together to produce visual traveling waves, standing waves, beating, and random motion. One might call this kinetic art and the choreography of the dance of the pendulums is stunning! Aliasing and quantum revival can also be shown.

How it works:

The period of one complete cycle of the dance is 60 seconds. The length of the longest pendulum has been adjusted so that it executes 51 oscillations in this 60 second period. The length of each...

Read more about Pendulum Waves
Reversible Fluid Mixing

What it shows:

Ink is squirted into a fluid and mixed in until it disappears. By precisely undoing the motions in the reverse direction, the ink becomes unmixed! The demonstration seems to defy thermodynamics in that it appears that entropy decreases, but in actuality the reversible mixing is made possible by ensuring that the mixing/unmixing is done without turbulence.

How it works:

The space between two transparent and concentric cylinders is filled with a viscous fluid (glycerine or Karo™ syrup). One or more lines of...

Read more about Reversible Fluid Mixing
Bow and Arrow

Use conservation of energy to predict the height the arrow will reach.

bow and arrow

What it shows:

When the string of a bow and arrow is pulled from equilibrium, the elastic potential energy in the bow is converted to kinetic energy of the arrow when the string is released. When the arrow...

Read more about Bow and Arrow
Karate Blow

The instructor breaks several boards with a swift blow of the hand.

What it shows:

The impulse momentum theorem is demonstrated in a most dramatic way by breaking several boards with the blow of your fist. You need not be a karate expert to show how the force of a well executed hammer-fist strike will easily break a stack of five to eight boards. The impulse is given by

impulse = F∆t = ∆mv

The point of the demonstration is: the greater the speed, the smaller ∆t will be and thus the greater the force.

...

Read more about Karate Blow
Cavendish Experiment

Calculation of gravitational constant, with accompanying apparatus model.

What it shows

The gravitational attraction between lead spheres. The data from the demonstration can also be used to calculate the universal gravitational constant G.

gravitational attraction
...

Read more about Cavendish Experiment
Newton's Apple

Apple electronically released from platform; fall time given by special circuit and digital display.

What it shows:

This is a free-fall-from-rest experiment in which an apple (or any other object of comparable size) is dropped from the lecture hall ceiling into a catching bucket on the floor. By measuring the (1) distance and (2) duration of the fall, an accurate (± 0.022%) determination of the acceleration due to gravity can be made:

...

Read more about Newton's Apple
Shoot the Monkey

Monkey released from platform is shot by simultaneously fired cannon.

What it shows:

This is a demonstration of the independence of the horizontal and vertical components of velocity of a projectile. Often referred to as "the monkey and hunter," the problem is the following. A hunter (at ground level) aims a gun at a monkey hanging from a branch high in a tree. The monkey, being very intelligent, does not want to be shot. It knows that light travels faster than bullets and reasons that, if it lets go of the branch the instant it sees the flash of the gun,...

Read more about Shoot the Monkey

Pages