[★★★]

Gravitational Lens

Laser and plastic lens with curvature to simulate bending of light by massive object.

What it shows:

Gravitational lensing is caused by the bending of light rays by the gravitational field of an intervening object. The effect is seen with the Sun, but is most spectacular when a whole galaxy acts as a lens to a cosmologically distant object, such as a quasar. Depending on the geometry of the alignment and the structure of the lensing galaxy, the image of the quasar is distorted into two or more distinct images, sweeping arcs or a complete ring. Here we model...

Read more about Gravitational Lens
Faraday Induction

What it shows:

The mathematical description of electromagnetic induction as formulated by Maxwell and Faraday requires two different sets of equations to calculate the induced voltage, depending on whether the coil is stationary and the magnet moving or vice versa. In fact, as this demonstration shows, the voltage is the same as predicted by the two sets of equations.

How it works:

The apparatus is identical to demonstration Faraday's Law, and is described in detail there. Briefly, it consists of a galvanometer hooked up to a...

Read more about Faraday Induction
Cloud Chamber

What It Shows

The path of a single charged particle can be made visible in cooled supersaturated air/alcohol vapor.

How It Works

The cloud chamber was developed by C.T.R. Wilson at the turn of the...

Read more about Cloud Chamber
Radioactive Human Body

What it shows:

Gamma ray spectroscopy is used to detect the minute amount of radioactive potassium-40 present in the human body. Using a NaI(Tl) scintillation detector in conjunction with a multichannel pulse-height analyzer (PHA), 1.46 MeV gammas originating from the human body are detected. The source of these gammas is K-40 which has a half-life of 1.26 billion years, and is the main source of radioactivity inside the body. The second most active radionuclide in the body, carbon-14 (5,730 yr half-life), can not be detected with this apparatus because it is a...

Read more about Radioactive Human Body
β-Ray Deflection

What it shows:

β-rays emanating from a radioactive isotope are deflected from their straight line paths by a magnetic field.

beta particle

How it works:

90Sr/90Y, a "pure" beta-minus source, emits a continuous spectrum of...

Read more about β-Ray Deflection
γ Ray Inverse Square Law

What it shows:

Gamma rays are electromagnetic radiations which we detect as quanta of energy or photons. When the radioactive source is confined so that it acts as a point source, the diminution in the number of photons incident on a given area is such that the intensity is inversely proportional to the square of its distance from the source.

How it works:

A Co-60 source (1.173 and 1.332 MeV gammas) radiates isotropically. A Geiger-Müller counter is used to detect the radiation intensity at distances of 2, 3, and 4 meters. The...

Read more about γ Ray Inverse Square Law
α, β, γ Penetration and Shielding

What it shows:

The interactions of the various radiations with matter are unique and determine their penetrability through matter and, consequently, the type and amount of shielding needed for radiation protection. Being electrically neutral, the interaction of gamma rays with matter is a statistical process and depends on the nature of the absorber as well as the energy of the gamma. There is always a finite probability for a gamma to penetrate a given thickness of absorbing material and so, unlike the charged particulate radiations which have a maximum range in...

Read more about α, β, γ Penetration and Shielding
α, β, γ, n Sources and Detection

What it shows:

Radiations originating from atomic and nuclear processes are classified into four types:

charged particulate radiation consisting of
1. heavy charged particles (α)
2. fast electrons (β)
uncharged radiation consisting of
3. electromagnetic radiation (γ, x-ray)
4. neutrons (n)

The interaction processes of each type of radiation explain their penetrability through matter, their difficulty or ease of detection, and their danger to biological organisms. The interactions of these radiations with matter are unique and the...

Read more about α, β, γ, n Sources and Detection
Rutherford Scattering

What it shows:

A qualitative demonstration of Rutherford's α-particle scattering experiment using magnetic pucks on an air table.

How it works:

In its simplest form, we use an Ealing air table, 1 1m square, with a fixed magnetic puck at the center. A second puck with the same polarity is repelled and scattered by the first; the scattering angle being dependant upon the impact parameter b (see figure 1). A more complex setup is described in the Comments.

...

Read more about Rutherford Scattering
Collisional Broadening

What it shows:

Perturbation by colliding atoms in a high pressure gas result in the broadening of emission and absorption lines. This is clearly seen in the sodium D (589nm and 589.6nm) lines of a high pressure sodium lamp.

The broadening in frequency width is dependent upon the separation of the perturbing particles (Novotny 1973) by

∆ν ∝ r-n

With n=2 the broadening is due to the coulomb field of an ionized atom or electron; this is the linear Stark effect. With n=3 the interaction is between neutral atoms of the same type; this...

Read more about Collisional Broadening
Street Lamp Spectra

What it shows:

Unlike the continuous spectrum emitted by blackbody radiators, the light given off by atoms in a gaseous discharge is characterized by its discreet nature. Using street lamps for the light sources, bright atomic spectra of mercury or sodium are projected onto a screen.

...

Read more about Street Lamp Spectra
Fraunhofer Absorption

What it shows:

Sodium 'D' line absorption showing up as a black line in the yellow of a continuous spectrum. Good as a simulation of the sodium portion of the Fraunhoffer absorption spectrum caused by atoms in the solar atmosphere; it does not however, resolve the 5890/5896Å doublet.

How it works:

As in the Sun, which is a black body source surrounded by an atmosphere of cooler gas containing many heavy atoms including sodium, we can set up a black body spectrum using a slide projector, and provide a hot sodium 'atmosphere' using...

Read more about Fraunhofer Absorption
Resonance Radiation/Absorption

What it shows:

For an electron to make a transition from one energy level to a higher one, it needs to absorb a photon who's energy is equal to the difference in the energy levels involved. When jumping back down, it will emit a photon of that same energy. These discrete energy separations are characteristic of the atom involved, and it's what provides an atom with its fingerprint line spectrum. Trying to induce a transition with a photon of different energy just doesn't work.

In this demonstration, light from a sodium source will be absorbed by sodium gas...

Read more about Resonance Radiation/Absorption

Pages