[★★★]

Uncertainty Principle

What it shows:

A pulse-modulated electromagnetic signal is simultaneously displayed in the time domain (on an oscilloscope) and in the frequency domain (on a spectrum analyzer). Using ∆n for the frequency spread (uncertainty in frequency) and ∆t for the duration of the pulse (uncertainty in the time domain), the frequency-time uncertainty relation is given by 1

∆n ∆t ≥ 1/

By progressively shortening the length of time that the carrier signal is on, the inverse relation between pulse length and spectral-energy...

Read more about Uncertainty Principle
Electron Diffraction

What it shows:

Louis de Broglie predicted that matter under certain circumstances would exhibit wave-like properties. A proof of this is the repeat of X-ray diffraction experiments using electrons, whose de Broglie wavelengths at high accelerating potentials are similar to X-ray wavelengths. Here we accelerate electrons into crystal targets and get diffraction patterns identical to those from X-ray diffraction.

...

Read more about Electron Diffraction
Photoelectric Effect

What it shows:

A direct observation that the photoelectric effect is color (i.e. frequency) dependent and not intensity dependent. We discharge an electroscope using UV radiation after all attempts to discharge it with light of a longer wavelength has failed.

How it works:

An ebonite rod and fur is used to place a negative charge onto a Braun electroscope (figure 1) fitted with a thick zinc plate. Deviation of the electroscope arm from the vertical indicates a net negative charge. Next we hit it with light from a 1000W...

Read more about Photoelectric Effect
Black Body Radiation Oven

What it shows:

Black body radiators in thermal equilibrium should emit the same spectrum of radiation, so inside a kiln at high temperature objects should appear the same color whatever their material.

How it works:

Place a piece of brick and an iron ball into a kiln (ours is a Blue M Electric Co. kiln with 25cm × 12cm × 10cm oven) that has a temperature range up to around 1000°C. Close the door and crank up the temperature to maximum. Depending on the type of kiln, it will take around 20 minutes to reach equilibrium (a good length...

Read more about Black Body Radiation Oven
Syrup Tube

What it shows:

Linearly polarized light, propagating down a long glass tube filled with corn syrup, is made to rotate its direction of polarization by the optically active corn syrup. The intensity of the 90° scattered light varies dramatically, in a periodic manner, along the length of the tube -- the intensity being zero when the dipole radiators oscillate in the line of sight direction, and maximum intensity when they oscillate perpendicular to the line of sight. Scattered light is most intense when the electric field vector is perpendicular to the line of sight.

...

Read more about Syrup Tube
Photoelasticity

What it shows:

Normally isotropic substances can become birefringent when under stress. This property can be used in stress analysis.

How it works:

To use birefringence in stress analysis, the sample is placed between two crossed Polaroids. The first Polaroid produces a linearly polarized light source for the sample. This source has components split into ordinary and extraordinary rays; the differing velocities of these rays in the sample creates a phase difference which is color dependent. The second Polaroid takes components of...

Read more about Photoelasticity
Malus' Law

What it shows:

Polaroid filters absorb one component of polarization while transmitting the perpendicular components. The intensity of transmitted light depends on the relative orientation between the polarization direction of the incoming light and the polarization axis of the filter and is described quantitatively by Malus' cos2θ intensity law.

...

Read more about Malus' Law
Double Refraction

What it shows:

A birefringent substance will split unpolarized light into two polarized rays with different refractive indices and different velocities. A crystal of calcite demonstrates this phenomenon.

Double Refraction...

Read more about Double Refraction
Polarization by Scattering

Simulation of atmospheric scattering and polarization of sunlight using slide projector and aquarium containing milky water.

What it shows:

Unpolarized light passing through a fluid is scattered; the scattered light being partially or completely plane polarized. For scattering by particles of comparable size to the wavelength of the light, this process is called Rayleigh scattering. The wavelength dependence of this type of scattering is responsible for blue skies and red sunsets.

How it works:

Unpolarized white light from a...

Read more about Polarization by Scattering
Newton's Rings

What it shows:

Waves reflecting from two surfaces can interfere constructively and destructively. In this case it is light waves that are being reflected at glass/air and air/glass interfaces. The interference produces a concentric ring pattern of rainbow colors in white light, or dark and light rings in monochromatic light.

...

Read more about Newton's Rings
Bouncing Light Beam

What it shows:

As a simulation of atmospheric refraction, this demonstration shows the gradual and continuous bending of light due to a gradient in the optical density of the medium. In this case the variable refracting medium is a tank of sugar water with a vertical gradient in the concentration of sugar and a HeNe laser provides the light beam. It can be used as a model of mirage formation (except that the direction of increasing refractive index is in the opposite direction) or even as a representation of the refraction of seismic waves through the Earth's...

Read more about Bouncing Light Beam
Hot Road Mirage

What it shows:

There are various types of mirages possible, the details depending on whether the hot air is above or below the cool air and how sharp the transition is from cool to warm. This demonstration simulates what happens when a dark asphalt road gets much hotter than the air around it--the air next to it becomes hotter than the higher air and light traveling through this temperature gradient is bent so much that it appears reflected. The shimmering water on a road's surface or the blue oasis in the desert are natural examples of blue skylight being...

Read more about Hot Road Mirage

Pages