Hotplate Mirage

What it shows:

A beam of light is distorted due to turbulent convection currents in air. This is a model of atmospheric distortion that affects seeing conditions in ground based optical and infrared astronomy.

How it works:

Turbulent air is provided by an electric stove ring, that heats the air above it as the warm earth dues to air sitting above it. The turbulent currents set up alter the refractive index of the air in a disordered and rapidly changing way. Light from a point source passing through these conditions is blurred...

Read more about Hotplate Mirage
Florence's Rainbow

What it shows:

A beam of white light incident on a giant raindrop (simulated by a water-filled round flask) produces a full rainbow of colors. As with real rainbows, one can also see that the light intensity inside the rainbow is much greater than outside the rainbow.

How it works:

A Florence (round-bottomed) flask is completely filled with water and sealed with a rubber stopper. A Beseler slide projector 1 serves as the sunlight. The light incident on the giant raindrop is refracted, reflected, and refracted once more, back in the direction of the...

Read more about Florence's Rainbow
Hero's Shortest Path

What it shows:

Hero's Principle states that light undergoing a reflection from a plane surface will follow the path of least distance. Here is a mechanical analog showing that when the angle of incidence equals the angle of reflection, the path length is minimized.

How it works:

The light path is represented by a 2m length of nylon rope that runs from a fixed end, 'reflects' around a pulley, back up to a second pulley (figure 1). The surplus rope is held taught by a 1kg mass. The pulleys, 6cm in diameter are free to move...

Read more about Hero's Shortest Path
Color Mixing

What it shows:

All colors can be created from a combination of the three primary colors of red, green and blue. The secondary colors of cyan, magenta and yellow are created from a combination of two primaries, and white light is perceived from the combination of all three.


Read more about Color Mixing
Infra-Red Projector

What it shows:

Like visible light, invisible infra-red radiation can be refracted by lenses to produce an image on a screen. Indeed, a slide projector designed for visible light is used as the imaging device; a heat- sensitive screen makes the invisible IR image visible.

How it works:

Our IR source is a 1000 watt "lantern slide" projector 1 from which we have removed the special heat-absorbing glass in the condenser assembly. The slide to be imaged is some kind of lettering, like the name of the course (Science A-29...

Read more about Infra-Red Projector

Detection of IR radiation from hair dryer and/or special IR source.

What it Shows:

Detection of infra-red radiation by the rotation of a paddle-wheel vane inside a low pressure flask.

How it Works:

A radiometer consists of a partially evacuated flask containing a four bladed vane (see figure 1). One side of each blade is a matt black, the other silver. The black surface, being a better absorber and radiator of heat, warms the air above its surface more than the silver. The resulting higher kinetic energy of these air...

Read more about Radiometer
OHP RLC Circuit

What It Shows

The current in a circuit consisting of a capacitor, inductor, and resistor will oscillate back and forth as the capacitor charges and discharges.

How It Works

The circuit layout is shown in the figure below. Initially the knife switch links the capacitor to the battery. Switching to complete the LRC circuit allows the capacitor to discharge. The current I in the circuit increases, as does the magneic field B inside the inductor. When the capacitor charge is zero, I and B are a maximum (the energy of the circuit is now stored in the inductor). As the...

Read more about OHP RLC Circuit
Electromagnetic Spear

What it shows:

Static 3-D stylized model of an electromagnetic wave, with two sets of sinusoidal fins at 90° representing the E and B fields.

How it works:

The wave packet model consists of a wooden spine with E and B fins of 1cm wooden dowels. A plastic arrowhead gives the spine a direction.

Figure 1. The Spear


Read more about Electromagnetic Spear
Magnetic Bubbles

What it shows:

A thin wafer of Ferromagnetic Garnet reveals its magnetic domain alignment as light and dark serpentine patterns when viewed between crossed Polarizers. These domains can be flipped by an external magnetic field, changing the pattern structure.

How it works:

The magnetic bubble apparatus consists 1 of a thin (8-12μm) single crystal film of Ferromagnetic Garnet (FMG) sandwiched between a pair of crossed Polaroids. The FMG crystals are magnetically anisotropic, that is, they have a strong tendency to orient...

Read more about Magnetic Bubbles
Skin Depth

What it shows:

The depth to which electromagnetic radiation can penetrate a conducting surface decreases as the conductivity and the oscillation frequency increase. This demo compares the skin depth of AM and FM radio frequencies, and shows just how small these distances are.

How it works:

An electromagnetic wave entering a conducting surface is damped and reduces in amplitude by a factor 1/e in a distance ∂ given by 1


Read more about Skin Depth
Motional emf

What it shows

An emf is induced between the ends of a wire moving back and forth in the presence of a magnetic field.

How it works

The ends of a monochord wire are connected to an oscilloscope as illustrated:

Motional emf

Plucking the wire...

Read more about Motional emf
Back EMF

What it shows:

A sudden change in current in an inductor - resistor circuit produces a very large back EMF. If that resistance is a bulb, it will shine much brighter during the change than during DC flow.

E = -LdI/dt

How it works:

The circuit consists of a 6V bulb connected in parallel with a 10.5mH inductor coil as in figure 1. With the battery connected, the bulb burns at its rated 6V. Disconnecting the battery sends the applied voltage and hence the current to zero. The rapidly collapsing...

Read more about Back EMF
OHP Magnetic Lines of Force

What it shows:

The magnetic field lines of the Earth can be represented by the field lines of a bar magnet.

How it works:

The Earth's magnetic field is basically a magnetic dipole. It can therefore be represented to first approximation by the field of a bar magnet. The shape of the field lines can be highlighted by the sprinkling of iron filings, or by the use of plotting compasses. The latter method has the advantage of showing the variation of dip angle with latitude, with the lines of force running parallel to the surface of...

Read more about OHP Magnetic Lines of Force
TV Image Deflection

Image on black and white television is deflected by a magnet, not unlike the Maltese Cross.

What it shows:
The television is basically a sophisticated cathode ray tube. The electron beam in the TV is influenced by magnetic fields in the same way as in Crookes tubes.

How it works:
The image on a black & white TV is formed by a single electron gun scanning the screen. Holding a strong magnet to the side or in front of the screen deflects the beam from its regular sweep pattern, distorting the image.


Read more about TV Image Deflection
Bird on a High-Voltage Transmission Line

What it shows:

Why doesn't a bird sitting on a high-voltage wire get electrocuted? This demonstration addresses that question and serves as a model of the situation.

How it works:

The important concept conveyed is that there needs to be a voltage difference across a conducting medium for current to flow through the medium. In this situation the conducting medium is a bird sitting on a high-voltage wire. The voltage on the wire is the voltage of the whole length of wire with respect to the ground. Although the bird on the...

Read more about Bird on a High-Voltage Transmission Line