[★★]

Conductivity of Water

What it shows:

Pure water is an electrical insulator. But provide an ionic compound in the form of salt, and you complete the circuit.

How it works:

A simple circuit with the mains supply connected to a 15W light bulb and two copper sheet electrodes (figure 1). The electrodes are placed in a 1500ml beaker containing distilled water. Distilled water is a very good insulator, with an autoionisation of 1:10-7 (the proportion of molecules in H3O+ + OH- form) it has a resistance of...

Read more about Conductivity of Water
Energy Stored in a Capacitor

What it shows:

The electrical energy stored in a capacitor is converted to mechanical work, driving a motor and raising a weight.

How it works:

A motor 1 is mounted atop a 2.5m length of 2×4. As it turns, it raises a 1 lb mass on a string from the ground by wrapping the string around a spindle (figure 1). The motor is driven by the discharge of a 12800µF, 75V capacitor previously charged by a DC power supply. 2 A double throw switch allows a clean change-over from one circuit to the other.
...

Read more about Energy Stored in a Capacitor
Capacitance of Human Body

What it shows:

Determine the capacitance of the human body as follows. Charge a person of unkown capacitance to 1000 volts. The person is subsequently connected (in parallel) to an external capacitor of known capacitance. The voltage measured across the capacitor combination allows one to determine the unknown capacitance of the person (typically between 180 — 200 pF).

How it works:

A 1000 volt power supply (output is in the microamp range) is used to put charge on a person. We assume that the amount of charge transferred to the...

Read more about Capacitance of Human Body
Induced Electric Dipole

What it shows:

Bringing a charged rod close to neutral dielectric polarizes the dielectric's surface charges. Here a pile of Styrofoam puffs are polarized and attracted to a charged rod.

How it works:

The neutral puff experiences a non-uniform electric field from the rod. Although there are polarized charges of both kinds, because (figure 1) the field is stronger near the rod due to the concentration of positive charges, there is a net attraction. On a dry day they'll jump to meet the rod.

figure 1....

Read more about Induced Electric Dipole
Semimusical Blocks of Wood

What it shows:

Drop a piece of wood on the floor and listen to the sound it makes. It may sound like noise, but it also makes a "semimusical" sound which is so poor in quality that one would be hard pressed to call it musical. Yet it is not pure noise because the sound contains a series of regular impulses that have a pitch. This may be demonstrated by dropping wood bars (one by one) onto the floor — a musical scale or tune is easily recognized.

How it works:

The tuned wood (oak) bars are 6½" long and 1" wide with thicknesses...

Read more about Semimusical Blocks of Wood
Doppler Tuning Forks

Run towards the blackboard carrying a tuning fork...

What it shows:

Waves emitted from a moving source are Doppler shifted to higher frequencies when moving towards the observer, and shifted to lower frequencies when moving away from the observer. In this situation the source is moving away from you, but the raised frequency sound is reflected back interfering and causing beating.

How it works:

All you need is a tuning fork (say 896Hz, see comments), a reflective surface like a blackboard, and plenty of room to take a run at...

Read more about Doppler Tuning Forks
Doppler Turntable

Two speakers, one at each end of rotating platform; beating due to frequency shift of speakers travelling in opposite directions.

What it shows:

Doppler shifting of sound to higher frequencies occurs when a source is moving towards the observer, and shifted to lower frequencies when the source is moving away. Here two sources emitting the same frequency when stationary rotate on a turntable. With one source moving towards you and one away, the Doppler shifted waves interfere to create beats.

How it works:

Two 1.5W 8Ω...

Read more about Doppler Turntable
Frahm Resonance Gyroscope

Vibrational resonances of metal reeds are excited by a spinning gyro as it slows down.

How it works

The Frahm resonance gyroscope is a standard piece of equipment that can be purchased from science supply houses. 1 It consists of a heavy wheel slightly unbalanced, held in a frame to which seven metal reeds are attached, each having a different vibrational frequency. The wheel is set in motion by unwinding a string that has been wrapped around the axle. As the wheel runs down, it sets each reed successively into vibration as its rotational frequency passes through...

Read more about Frahm Resonance Gyroscope
Tuning Forks

Selection of mounted tuning forks and rubber hammer.

How it works:

Each tuning fork is mounted on a wooden sound box to amplify the sound (they're very difficult to hear without the box). A microphone/preamp/scope setup may be used to visually demonstrate the pure sinusoidal sound wave. Additionally, a frequency analyzer shows a single frequency component (however, if the gain is turned up high, you may also see the frequency components due to the resonances of the sound box or harmonics of the tuning fork if it was whacked too hard). One of the...

Read more about Tuning Forks
Physical Pendulum

A rigid rod executes simple harmonic motion about an adjustable pivot point.

What It Shows

The period of a physical pendulum is measured and compared to theory. The pivot point, and thus the period, is adjustable along the length of the pendulum making it possible to demonstrate that there is a pivot point where the period is a minimum (stationary point).

How It Works

The physical pendulum is a 1/2" diameter × 100cm long brass rod. A collar with a "knife edge" can be fixed anywhere along the length of the pendulum and serves as the pivot point. The period...

Read more about Physical Pendulum
Simple Harmonic Motion Demonstrator

Relation between circular motion and linear displacement on overhead projector.

What It Shows

Uniform circular motion can be shown to be the superposition of simple harmonic motions in two mutually perpendicular directions. This apparatus gives the audience a visual display of how one dimensional simple harmonic motion varies in unison with circular motion.

...

Read more about Simple Harmonic Motion Demonstrator
Pascal's Paradox

What it shows:

Three containers are filled with water to the same depth, and each has the same base surface area (see figure 1). Since the pressure and area are the same in each container, the force should be the same (pressure = force/area)....

Read more about Pascal's Paradox

Pages