[L]

Stonehenge

Static model of site; can be used with light source to simulate a mid-summer's morning.

What it shows:

1:50 scale model of the Stonehenge site with the positions of Sun and Moon on important dates marked. It can be used with a light show to reproduce Sunrise on Midsummer's morning, June 21.

How it works:

The Stonehenge site consists of the sarsen circle of 30 megaliths capped with 30 lintels. Within this circle is a horseshoe pattern of five trilithons. 80m north-east of the circle's center is the Heel Stone; it is the...

Read more about Stonehenge
Sodium Absorption

What it shows:

Sodium 'D' line absorption showing up as a black line in the yellow of a continuous spectrum. Good as a simulation of the sodium portion of the Fraunhoffer absorption spectrum caused by atoms in the solar atmosphere; it does not however, resolve the 5890/5896Å doublet.

How it works:

As in the Sun, which is a black body source surrounded by an atmosphere of cooler gas containing many heavy atoms including sodium, we can set up a black body spectrum using a slide projector, and provide a hot sodium 'atmosphere' using...

Read more about Sodium Absorption
Collapse of 55 Gallon Drum

Drum evacuated by vacuum pump; crushed by atmospheric bombardment.

What it shows:

With an air pressure of 105 Nm-2 at sea level, even a heavy duty oil drum will be crushed if it has nothing inside to balance the pressure.

How it works:

The screw cap on the drum is fitted with a vacuum pump connector. Simply turn on the pump and wait; it takes about 8 minutes to pump down, so you can carry on with what you were doing interrupted by various creaks and bangs as the drum's side walls begin to give....

Read more about Collapse of 55 Gallon Drum
Inflating Universe

What it shows:

According to present accepted theory the Universe came into existence some 17 billion years ago as a Big Bang and is currently expanding. You can model the expansion of space in two dimensions using a balloon.

inflating universe

How it works...

Read more about Inflating Universe
Nuclear Fission

What it shows:

In a nuclear reactor or atom bomb, a fissile material such as 235U can capture a neutron. The resulting unstable nucleus fragments into two smaller nuclei, releasing energy and several neutrons (a typical equation is given below). Each of these neutrons can in turn cause the fission of a 235U nucleus. If there is above a critical concentration of fissile material, this chain reaction will continue unaided, and if unregulated can result in a very loud bang.

n + 235U → 236U* → 141Ba + 92Kr + 3n

... Read more about Nuclear Fission
Neutron Activation of Silver

What it shows:

One of the more important discoveries in modern physics is the production of isotopes (both radioactive and stable) by the capture of neutrons. 1 In this experiment the bombardment of silver by thermalized neutrons produces short lived radioactive isotopes of silver whose half lives can readily be measured. It can also be shown that bombardment by fast neutrons does not induce radioactivity because of the extremely low neutron cross sections involved. Using a Geiger counter in conjunction with a multichannel analyzer in the MCS (...

Read more about Neutron Activation of Silver
Radioactive Human Body

What it shows:

Gamma ray spectroscopy is used to detect the minute amount of radioactive potassium-40 present in the human body. Using a NaI(Tl) scintillation detector in conjunction with a multichannel pulse-height analyzer (PHA), 1.46 MeV gammas originating from the human body are detected. The source of these gammas is K-40 which has a half-life of 1.26 billion years, and is the main source of radioactivity inside the body. The second most active radionuclide in the body, carbon-14 (5,730 yr half-life), can not be detected with this apparatus because it is a...

Read more about Radioactive Human Body
Rutherford Scattering

What it shows:

A qualitative demonstration of Rutherford's α-particle scattering experiment using magnetic pucks on an air table.

How it works:

In its simplest form, we use an Ealing air table, 1 1m square, with a fixed magnetic puck at the center. A second puck with the same polarity is repelled and scattered by the first; the scattering angle being dependant upon the impact parameter b (see figure 1). A more complex setup is described in the Comments.

...

Read more about Rutherford Scattering
Collisional Broadening

What it shows:

Perturbation by colliding atoms in a high pressure gas result in the broadening of emission and absorption lines. This is clearly seen in the sodium D (589nm and 589.6nm) lines of a high pressure sodium lamp.

The broadening in frequency width is dependent upon the separation of the perturbing particles (Novotny 1973) by

∆ν ∝ r-n

With n=2 the broadening is due to the coulomb field of an ionized atom or electron; this is the linear Stark effect. With n=3 the interaction is between neutral atoms of the same type; this...

Read more about Collisional Broadening
Street Lamp Spectra

What it shows:

Unlike the continuous spectrum emitted by blackbody radiators, the light given off by atoms in a gaseous discharge is characterized by its discreet nature. Using street lamps for the light sources, bright atomic spectra of mercury or sodium are projected onto a screen.

...

Read more about Street Lamp Spectra
Fraunhofer Absorption

What it shows:

Sodium 'D' line absorption showing up as a black line in the yellow of a continuous spectrum. Good as a simulation of the sodium portion of the Fraunhoffer absorption spectrum caused by atoms in the solar atmosphere; it does not however, resolve the 5890/5896Å doublet.

How it works:

As in the Sun, which is a black body source surrounded by an atmosphere of cooler gas containing many heavy atoms including sodium, we can set up a black body spectrum using a slide projector, and provide a hot sodium 'atmosphere' using...

Read more about Fraunhofer Absorption
Uncertainty Principle

What it shows:

A pulse-modulated electromagnetic signal is simultaneously displayed in the time domain (on an oscilloscope) and in the frequency domain (on a spectrum analyzer). Using ∆n for the frequency spread (uncertainty in frequency) and ∆t for the duration of the pulse (uncertainty in the time domain), the frequency-time uncertainty relation is given by 1

∆n ∆t ≥ 1/

By progressively shortening the length of time that the carrier signal is on, the inverse relation between pulse length and spectral-energy...

Read more about Uncertainty Principle
Planck's Constant Determination

What it shows:

The photoemission of electrons from a metal surface depends on the energy of the incident radiation and not on its intensity. Knowing the energy of the emitted photoelectrons and the frequency of the incident light, you can calculate a value for Planck's constant h.

How it works:

Using a mercury source, we have at our disposal three very bright visible lines, in the blue, green and yellow (doublet), and a rich selection of ultra-violet. Our main source is a Phillips Lifeguard 1000W street lamp with its outer (uv...

Read more about Planck's Constant Determination
Photoelectric Effect

What it shows:

A direct observation that the photoelectric effect is color (i.e. frequency) dependent and not intensity dependent. We discharge an electroscope using UV radiation after all attempts to discharge it with light of a longer wavelength has failed.

How it works:

An ebonite rod and fur is used to place a negative charge onto a Braun electroscope (figure 1) fitted with a thick zinc plate. Deviation of the electroscope arm from the vertical indicates a net negative charge. Next we hit it with light from a 1000W...

Read more about Photoelectric Effect
Black Body Radiation Oven

What it shows:

Black body radiators in thermal equilibrium should emit the same spectrum of radiation, so inside a kiln at high temperature objects should appear the same color whatever their material.

How it works:

Place a piece of brick and an iron ball into a kiln (ours is a Blue M Electric Co. kiln with 25cm × 12cm × 10cm oven) that has a temperature range up to around 1000°C. Close the door and crank up the temperature to maximum. Depending on the type of kiln, it will take around 20 minutes to reach equilibrium (a good length...

Read more about Black Body Radiation Oven

Pages