[S]

OHP RLC Circuit

What It Shows

The current in a circuit consisting of a capacitor, inductor, and resistor will oscillate back and forth as the capacitor charges and discharges.

How It Works

The circuit layout is shown in the figure below. Initially the knife switch links the capacitor to the battery. Switching to complete the LRC circuit allows the capacitor to discharge. The current I in the circuit increases, as does the magneic field B inside the inductor. When the capacitor charge is zero, I and B are a maximum (the energy of the circuit is now stored in the inductor). As the...

Read more about OHP RLC Circuit
Hall Effect

What it shows:

When a magnetic field is applied perpendicular to a conductor carrying current, a potential difference is observed between points on opposite sides of the conductor. This happens because the magnetic field deflects the moving electrons (Lorentz force) to the edge of the conductor and the altered charge distribution generates a transverse electric field.

How it works:

The conductor is a small bar (11mm × 2mm × 2mm) of germanium (p-type?). Current (18 mA) is made to flow down the length of the bar by a 3 volt potential...

Read more about Hall Effect
Magnetic Bubbles

What it shows:

A thin wafer of Ferromagnetic Garnet reveals its magnetic domain alignment as light and dark serpentine patterns when viewed between crossed Polarizers. These domains can be flipped by an external magnetic field, changing the pattern structure.

How it works:

The magnetic bubble apparatus consists 1 of a thin (8-12μm) single crystal film of Ferromagnetic Garnet (FMG) sandwiched between a pair of crossed Polaroids. The FMG crystals are magnetically anisotropic, that is, they have a strong tendency to orient...

Read more about Magnetic Bubbles
Paramagnetism of Oxygen

What It Shows

A large magnet with a small cylindrical gap allows a stream of liquid nitrogen to pass over and through. Poured liquid oxygen hangs between the poles in the strong field until it boils away.

How It Works

Pour the liquid nitrogen first, slowly over the pole pieces. The result is nothing but vapor condensation and crackling plexiglas; the liquid does not interact with the large magnetic field.

Next pour the liquid oxygen slowly over the pole pieces, and it collects in the gap between the poles. It might take two or three short pours to get the...

Read more about Paramagnetism of Oxygen
Diamagnetic Levitation

What it shows:

Stable levitation of one magnet by another is usually prohibited by Earnshaw's Theorem, but the introduction of diamagnetic material at special locations can stabilize such levitation. The demonstration is a replica of an experiment described by M.D. Simon and A.K. Geim1 and is pictured in the photograph. The illustration is from their paper.

...

Read more about Diamagnetic Levitation
Eddy Currents at LN2 Temperature

What it shows:

A rectangular block of copper (measuring 6"×6"×2"), offers VERY little resistance to eddy currents generated by dragging a magnet across its surface. Thus the Lorentz force between the eddy currents and magnetic field is quite strong and you can feel a sizable drag force. Dropping a magnet onto the surface likewise produces a sizable Lorentz force, as evidenced by the damped motion of the magnet's fall. The effects are quite dramatic at liquid nitrogen temperature.

How it works:

Copper has a positive temperature...

Read more about Eddy Currents at LN2 Temperature
Eddy Current Levitation

What it shows:

It's impossible to magnetically levitate an object with static magnetic fields. However, it's posible to levitate a magnet with another hand-held magnet by taking advantage of eddy currents.

How it works:

A rectangular block of copper (6"×6"×2") is stacked on top of another one (6"×6"×1"). They are separated by 1" plastic spacers. A rectangular bar magnet (2"×2"×½") is placed in the space between them. When a second magnet is lowered from above, the two magnets attact each other. However, rather than "jumping up"...

Read more about Eddy Current Levitation
OHP Magnetic Lines of Force

What it shows:

The magnetic field lines of the Earth can be represented by the field lines of a bar magnet.

How it works:

The Earth's magnetic field is basically a magnetic dipole. It can therefore be represented to first approximation by the field of a bar magnet. The shape of the field lines can be highlighted by the sprinkling of iron filings, or by the use of plotting compasses. The latter method has the advantage of showing the variation of dip angle with latitude, with the lines of force running parallel to the surface of...

Read more about OHP Magnetic Lines of Force
OHP Circuit Board

What it shows:

This demo allows a lecturer to play around with various DC circuits on the overhead projector.

How it works:

A removable template of 26cm × 17cm plexiglass has a set of 6mm diameter tightly wound springs of length 1cm fixed at 5cm intervals (reminiscent of those Radio Shack® n1000-in-1 electronics kits). Standard resistors and 5cm lengths of 22AWG wire clip into these springs to form a circuit, and the template is then rested on a parent board consisting of two transparent meters (figure 1). These are...

Read more about OHP Circuit Board
Hand Battery

Copper and zinc plates connected by micro-ammeter; your hand completes the circuit.

Clean copper and zinc sheet metal stock is cut into strips or pads. Alligator clip a zinc strip and a copper strip and plug the leads into a modern multimeter. DC 2V scale should cover the 1.09V that we expect from a zinc/copper battery at standard conditions of 1 Molar electrolyte and room temperature.

Our fingers are a network of electrolytic conductors, with more or less conductance (depending on moisture and salt). Pressed to the metal strips, adjacent fingers complete the circuit and...

Read more about Hand Battery
Capacitance of Human Body

What it shows:

Determine the capacitance of the human body as follows. Charge a person of unkown capacitance to 1000 volts. The person is subsequently connected (in parallel) to an external capacitor of known capacitance. The voltage measured across the capacitor combination allows one to determine the unknown capacitance of the person (typically between 180 — 200 pF).

How it works:

A 1000 volt power supply (output is in the microamp range) is used to put charge on a person. We assume that the amount of charge transferred to the...

Read more about Capacitance of Human Body
Beats

Two tuning forks with similar frequencies; one fork is variable in frequency to tune beating.

What it shows:

The interference of waves from two tuning forks of slightly differing frequencies gives rise to beating, that is, a modulated wave of frequency.

νb = (ν1 - ν2)

How it works:

Using two tuning forks of 256Hz, with one of the pair having small clamps (see figure 1) attached to the fork's limbs. These alter the fork's resonant frequency, and adjustment of the clamp...

Read more about Beats

Pages