[★]

Time Measurement

Time signals from U.S. Naval Observatory.

What It Shows

There are several services to help the scientist keep time. Some of these can be brought into the lecture hall. Students can listen to the time signals from WWVB (60 kHz signal from Colorado) on a radio receiver or the U.S. Naval Observatory's time service over a telephone line. A publication giving detailed descriptions of the technical services provided by the National Bureau of Standards radio stations is available in the Prep Room. These services are: standard radio frequencies, standard audio frequencies...

Read more about Time Measurement
Potential Well Orbiter

Orbital motion simulated by ball rolling on wooden potential well.

What it shows:

Motion in a central potential is demonstrated by a ball rolling on a circular 1/r curved surface.

How it works:

The 1/r potential well simulates the gravitational potential surrounding a point mass; a ball bearing moving in this potential follows a parabolic or elliptical orbit depending upon its initial trajectory and velocity. As it loses energy due to friction, the orbit decays and the ball spirals towards the centre of the well. You could...

Read more about Potential Well Orbiter
Gravitational Field Surface

1m diameter rubber sheet acts as curved space for ball bearing masses.

What it shows:

In general relativity, gravity is replaced by a curved space geometry, where the curvature is determined by the presence and distribution of matter. Objects move in straight lines, or along geodesics, but because of the curvature of space, their paths will simulate the effect of gravitational attraction. This demo gives a two dimensional view of warped space.

How it works:

In this 2-D analog, a 1 meter diameter piece of dental dam forms a...

Read more about Gravitational Field Surface
Density

Aluminum/Uranium and SF6/Air/Helium comparisons.

What It Shows 

The concept of mass per unit volume is punctuated by having several different substances on hand for comparison. In solid materials, we have equal size chunks1 of aluminum (2.7 g/mL) and uranium (18.7 g/mL) for comparison. For gases, we typically use balloons filled with helium (0.18 g/L), air (1.29 g/L), and sulfur hexafluoride (6.50 g/L). Being 5 times heavier that air, the SF6balloon noticeably feels like it weighs more than the air-filled one and...

Read more about Density
Saddle Shape Universe

Curved space segment for open universe geometry.

What it shows:

Whether the Universe continues to expand forever or will collapse back in upon itself depends upon the amount of matter it contains. For a density parameter Ω less than unity the Universe will not have enough mass to collapse and will be in a state of perpetual expansion. In general relativity, the curvature of space is dependent upon the density of the Universe, and for Ω<1 the curvature is negative or hyperbolic. It can be represented two dimensionally (see Comments) by a saddle...

Read more about Saddle Shape Universe
Vector Arrows

Wooden arrow vectors, hand held or mountable.

What It Shows:

Various length and color, wooden arrow vectors can be hand-held, placed (magnetically) on the blackboard, or stuck into a wooden block to define a coordinate system. Small vector blocks can be used as body axes or to visualize coordinate transformations.

...

Read more about Vector Arrows
Supercooling of Water

Pure water cooled to below 273K without freezing; seeded to spontaneously crystallize.

What it shows:

A liquid can be taken to a temperature below its freezing point if it is cooled slowly and there are no nucleation sites for crystallization to begin. In this demonstration you can create a flask of liquid water at below 0°C that, when 'seeded' by the introduction of a nucleation site (in this case dry ice) will be instantaneously frozen.

How it works:

This is pretty much described in Setting it Up.

...

Read more about Supercooling of Water
Three-Legged Table

Triangular table supported by platform scales.

What it shows:

This is a two-dimensional version of the Loaded Beam demonstration.

How it works:

An equilateral triangular-shaped table is supported at each corner by a platform scale (same type as in "Loaded Beam"). One of our large (14.5 kg = 32 lb) weights is placed on the table. The scale readings vary with the position of the weight. The procedure to be followed in this demonstration...

Read more about Three-Legged Table
Bag of Lead Shot

Dropping bag containing lead turns gravitational potential energy to heat.

What it shows: 

A demonstration of the conversion of gravitational potential energy to heat energy. A bag of lead shot, repeatedly dropped to the ground, will heat up.

How it works: 

Lead has a sufficiently low specific heat capacity (128 J/kg/K) that a 5kg bag dropped five times from a height of 1.0m onto a rigid floor should increase in temperature by about 2K. The shot is contained in a bank deposit bag with reinforced...

Read more about Bag of Lead Shot

Pages