Microscope Resolution Tuesday, December 6, 2016

What it shows:  The wave nature of light limits our ability to see the very small. Application of the Rayleigh limit of resolution tells us that the size of the smallest objects one can resolve under a microscope is approximately equal to the wavelength of light. The optical limits of a microscope are demonstrated as one attempts to resolve 1 μm diameter spheres (about twice the wavelength of light) — one sees spots of light surrounded by diffraction rings rather than sharply defined spheres, similar to the 3rd image (from: Cagnet/Francon/Thrierr, Atlas of Optical...

Read more about Microscope Resolution
Air Table Center-of-Mass Motion Monday, May 2, 2016

What it shows:  Two bodies, rotating about each other, rotate about their common center-of-mass (COM). The COM exhibits uniform motion (or none at all) regardless of what the two bodies are doing.

How it works:  The "bodies" are 4-1/2" diameter acrylic disks that float on a cushion of air on a large air table.1 Presently we have three versions ready to go. (1) The first version has two disks connected by means of a 12"- long plastic ruler. A large "dot" at the center of the ruler marks the COM. The disks can be made to simply...

Read more about Air Table Center-of-Mass Motion
Vortex Shedding in Air Friday, April 8, 2016

A thin wire, moving through the air, is made to vibrate in the audio range at the vortex shedding frequency.

What it shows:  When air flows around an object, there is a range of flow velocities for which a von Karman vortex street is formed. The shedding of these vortices imparts a periodic force on the object. The force is quite small and not enough to accelerate the object to any significant amount, especially if the object is relatively massive. If the situation is such that the object can vibrate about a fixed position, we have the possibility of simple...

Read more about Vortex Shedding in Air
Pulse Reflections in a Coax Cable Thursday, February 25, 2016

What it shows:  A voltage pulse, injected into a long coaxial cable, will travel down the length of the cable and undergo a reflection at the other end. The nature of that reflection depends on how the cable is terminated at the other end. Shorting the cable at the far end produces an inverted reflection. With no termination (an "open" end), the reflected pulse is not inverted. When the impedance of the termination matches that of the cable, there is no reflection.

Knowing the length of the cable and noting the amount of time it takes the pulse to come...

Read more about Pulse Reflections in a Coax Cable
Reverse Sprinkler Friday, December 18, 2015:

What it Shows

Inspired by Richard Feynman's story in his 1985 book (pp 63-65), Surely You're Joking Mr. Feynman, the demonstration answers the question "which direction does a lawn sprinkler spin if water enters the nozzle rather than being expelled from the nozzle?" The reverse sprinkler spins in the opposite direction of a "normal" sprinkler. "Dissipative effects" has been the hand-waving reason for the past 30 years, but the real reason why it spins in the reverse direction is far from obvious (see Comments, below). It turns out that a sprinkler designed to be "truly...

Read more about Reverse Sprinkler
Center of Mass

Irregular lamina with marked center-of-mass tossed in air.

What it shows:

The center of gravity fixed in (or outside) the object always orients itself with minimum potential energy on a vertical line below the support point. When an irregular shape is thrown into the air, it is seen to rotate about its marked center of gravity or center of mass (COM).

How it works:

We have several irregular lamina to suspend and/or throw in the air. They are (1) an amoeba shaped piece of masonite pegboard, (2) a cut-out map of the U.S. glued...

Read more about Center of Mass
Mechanical Linear Amplifier

What it shows:

One falling domino knocks down two, which in turn knock down three, etc. Use it to model cascade signaling.

How it works:

Twenty five rows of dominoes are set up in front of the first domino. Each successive row is comprised of one additional domino, e.g. the 2nd row has two, the 3rd row three, ... the 25th row has twenty five. A total of 325 dominoes get knocked down in a couple of seconds after the 1st one falls.

The action can be contrasted to a second board which has 11 rows of 30 tiles each, for a total of...

Read more about Mechanical Linear Amplifier
Potential Well

Orbital motion simulated by ball rolling on wooden potential well.

What it shows:

Motion in a central potential is demonstrated by a ball rolling on a circular 1/r curved surface.

How it works:

The 1/r potential well simulates the gravitational potential surrounding a point mass; a ball bearing moving in this potential follows a parabolic or elliptical orbit depending upon its initial trajectory and velocity. As it loses energy due to friction, the orbit decays and the ball spirals towards the centre of the well. You could...

Read more about Potential Well
Newton's Cradle

What it shows:

Demonstration of elastic collisions between metal balls to show conservation of momentum and energy.

How it works:

Newton's Cradle (less affectionately known as Newton's Balls) consists of six rigid balls hanging in a row with bifilar suspension. The balls hang so that they just barely touch their neighbor.

Various initial conditions can be employed. A single ball displaced will collide with the remaining four, sending the ball at the far end off. Same idea for two or three balls. Four balls, and only the first two will stop; the center two...

Read more about Newton's Cradle