CRT Paddle Wheel

A beam of cathode rays (electrons) impinging on a paddle wheel cause it to spin and travel down the vacuum tube.

crookes tubes

What it Shows

A paddle wheel is suspended by its axle inside a Crookes tube so that when the paddle vanes spin the entire wheel is free to travel the length of the tube...

Read more about CRT Paddle Wheel
Bouncing Photon

A photon (modeled by a bouncing ping-pong ball) is observed from two reference frames and provides the motivation for time dilation.

Critical Opalescence

What it shows:

The demonstration shows density fluctuations in liquids. These fluctuations are particularly spectacular near critical points. A binary fluid mixture of methanol (29% by weight) and cyclohexane (71%) becomes opalescent when heated up to its critical temperature (about 45˚C) ... the fluids become miscible above this temperature.

How it works:

The two fluids are sealed in a special vial, able to withstand elevated pressure. The fluids are immiscible at room temperature. When brought up to 45˚C, they become miscible...

Read more about Critical Opalescence
Dilatancy of Deformation

What it shows:

When sand in a balloon, just as atoms in a lattice, are close packed, they occupy the least possible volume. Any deformation, even compression, deforms this close-packed arrangement causing an increase in volume.

How it works:

The balloon is filled with sand, and black ink added allowed to percolate down and fill the air gaps. A capillary tube sticking out of the balloon indicates the ink level. When the balloon is squeezed the sand, which had settled down to a closely packed arrangement, is dislocated. Larger gaps...

Read more about Dilatancy of Deformation
Jupiter's Satellites

Static model of satellite orbits.

What it shows:

Static 3-D model showing the orbital paths of Jupiter's satellites.

How it works:

The model marks the orbital paths of the Jovian satellites to a scale of 1.5cm = 106 km. This scale allows the orbit of the outermost satellite Sinope to fit within a 1m × 1m plywood base. The orbits of the outer 8 satellites are marked using loops of 2mm × 1mm spring steel supported to their correct heights by 5mm Plexiglas rods (Pasiphae rising to the greatest height of 42cm). The...

Read more about Jupiter's Satellites
Precipitation of Lead Iodide

Potassium iodide solution is added to lead nitrate solution, and bright yellow lead iodide precipitates.

Potassium iodide solution is 0.1 M and lead nitrate solution is 0.01M.

The lead nitrate solution is about 350 ml in a 600ml beaker, and the KI sol'n is 200 ml in a 400ml beaker. Pour the potassium iodide sol'n into the lead nitrate.

Glasses and gloves. The finished demonstration is stirred and the precipitate and solution goes in the hazardous waste bucket.

Nitrogen Phase Change

Liquid nitrogen is pumped on and freezes into a sponge of solid nitrogen.

The liquid nitrogen is in a 600 or 800 ml beaker under a shielded bell jar on top of the red vacuum cart. A cold trap is not necessary if only nitrogen is being pumped on.

It is important that the beaker of liquid nitrogen not have frozen water vapor on its side, as the view is impaired. A camera is zoomed in on the beaker, which is in a thick glass bell jar and an acrylic tube shield.

With the pump running and the bell jar vent open, pour the nitrogen and cover the beaker with bell jar. Open up...

Read more about Nitrogen Phase Change
Vortex Shedding in Air

A thin wire, moving through the air, is made to vibrate in the audio range at the vortex shedding frequency.

What it Shows

When air flows around an object, there is a range of flow velocities for which a von Karman vortex street is formed. The shedding of these vortices imparts a periodic force on the object. The force is quite small and not enough to accelerate the object to any significant amount, especially if the object is relatively massive. If the situation is such that the object can vibrate about a fixed position, we have the possibility of simple...

Read more about Vortex Shedding in Air

The topic of friction can be a little dry. Consider lubricating students' interest with these two examples

Friction around Pole

What it shows:  Many people have probably observed that, by wrapping a rope around a post, a person can hold in check a much larger force than would ordinarily be possible. In this experiment a flexible thick rope is wound around a horizontal pipe. Due to the interaction of the frictional forces and tension, there can be a considerable difference in tension between the two ends of the rope. In the demonstration, one end of the...

Read more about Friction
Tension Puzzler

What It Shows

The two ends of a dial-type spring balance are each connected to strings which run over pulleys. With equal weights attached to the ends of the strings, the spring balance indicates the value of one of the weights.

How It Works

The demonstration is presented to the class as a puzzler: the spring balance is turned around so that the class can't see the dial. Students are invited to guess what it is reading. Invariably they guess the sum of the two weights. The lecturer then turns the face of the dial gauge around showing them the error of...

Read more about Tension Puzzler