Presentations

Neutron Activation of Silver

What it shows:

One of the more important discoveries in modern physics is the production of isotopes (both radioactive and stable) by the capture of neutrons. 1 In this experiment the bombardment of silver by thermalized neutrons produces short lived radioactive isotopes of silver whose half lives can readily be measured. It can also be shown that bombardment by fast neutrons does not induce radioactivity because of the extremely low neutron cross sections involved. Using a Geiger counter in conjunction with a multichannel analyzer in the MCS (...

Read more about Neutron Activation of Silver
Cloud in a Bottle

A 5-gallon bottle containing air and water vapor is slightly pressurized; a sudden release of the pressure cools the vapor, forming a cloud.

The bottle is a heavy Pyrex carboy with tooled mouth. A one-holed rubber stopper fits the mouth and is air-tight. A meter of Tygon tubing is fitted to a short tube in the rubber stopper.

The bottle is kept stopped and wet, and should work off the shelf. If the bottle is dry, spray about 10 ml of distillled water inside.

To demonstrate cloud formation, fit the stopper to the bottle and apply pressure with the lungs. Blow into the...

Read more about Cloud in a Bottle
Lead Bell

Dull at room temperature, rings clearly after immersion in liquid nitrogen.

What it shows: 

A lead bell, dull sounding at room temperature, rings brightly when cooled to liquid nitrogen temperatures.

How it works: 

A lead bell at room temperature is dull in more ways than one. But its elasticity is temperature dependant, with an increase in elasticity as its temperature decreases. This increase in elastic modulus narrows the resonance response with frequency and increases the quality Q of the lead as...

Read more about Lead Bell
Stonehenge

Static model of site; can be used with light source to simulate a mid-summer's morning.

What it shows:

1:50 scale model of the Stonehenge site with the positions of Sun and Moon on important dates marked. It can be used with a light show to reproduce Sunrise on Midsummer's morning, June 21.

How it works:

The Stonehenge site consists of the sarsen circle of 30 megaliths capped with 30 lintels. Within this circle is a horseshoe pattern of five trilithons. 80m north-east of the circle's center is the Heel Stone; it is the...

Read more about Stonehenge
Smog in a Bottle

Nitrogen dioxide is produced by an electric discharge in air and, when sprayed with a water mist, produces acid rain.

What it shows:

Some of the most irritating and dangerous pollutants in our atmosphere are gases such as sulfur dioxide and nitrogen dioxide. Nitrogen dioxide is a deep orange-red gas that, together with smokelike particles, is responsible for the color of smog. In this demonstration, nitrogen dioxide is produced by an electric discharge in air and, when sprayed with a water mist, produces acid rain.

How it works:...

Read more about Smog in a Bottle
Reaction of Magnesium and Air

A magnesium ribbon is held with tongs and lit with a match or torch, making a bright flame that consumes the ribbon from the bottom up.

The ribbon should be about 20-30 cm long. Hold the ribbon with the tongs high and at arms length. Let the magnesium ribbon hang at a steep angle but not vertical. Light the bottom of the ribbon by bringing the end of the torch flame up to ribbon.  Magnesium will melt before it lights, so carefully with the torch. The ribbon can also be lit with a wooden match.

Wear safety glasses and don't look directly at the flame.

Bean Buoyancy

What it shows

Objects with a density lower than the fluid that they are submerged in will float; objects with a greater density will sink. This is shown using a brass ball and ping-pong ball of equal size, and a sea of beans.

How it works

500g of navy beans form a rather coarse fluid in a 1.5L glass beaker. Embedded in the beans is a ping pong ball, and sitting on the surface is a brass ball, 4cm in diameter. This fluid needs to have flow 'induced', and this is done by shaking the beaker side to side. The ratio of densities of brass:beans:ping-pong is approximately...

Read more about Bean Buoyancy
Shoot the Monkey

Monkey released from platform is shot by simultaneously fired cannon.

What it shows:

This is a demonstration of the independence of the horizontal and vertical components of velocity of a projectile. Often referred to as "the monkey and hunter," the problem is the following. A hunter (at ground level) aims a gun at a monkey hanging from a branch high in a tree. The monkey, being very intelligent, does not want to be shot. It knows that light travels faster than bullets and reasons that, if it lets go of the branch the instant it sees the flash of the gun,...

Read more about Shoot the Monkey

Pages