[t+]

Microscope Resolution Tuesday, December 6, 2016

What it shows:  The wave nature of light limits our ability to see the very small. Application of the Rayleigh limit of resolution tells us that the size of the smallest objects one can resolve under a microscope is approximately equal to the wavelength of light. The optical limits of a microscope are demonstrated as one attempts to resolve 1 μm diameter spheres (about twice the wavelength of light) — one sees spots of light surrounded by diffraction rings rather than sharply defined spheres, similar to the 3rd image (from: Cagnet/Francon/Thrierr, Atlas of Optical...

Read more about Microscope Resolution
Air Table Center-of-Mass Motion Monday, May 2, 2016

What it shows:  Two bodies, rotating about each other, rotate about their common center-of-mass (COM). The COM exhibits uniform motion (or none at all) regardless of what the two bodies are doing.

How it works:  The "bodies" are 4-1/2" diameter acrylic disks that float on a cushion of air on a large air table.1 Presently we have three versions ready to go. (1) The first version has two disks connected by means of a 12"- long plastic ruler. A large "dot" at the center of the ruler marks the COM. The disks can be made to simply...

Read more about Air Table Center-of-Mass Motion
Pulse Reflections in a Coax Cable Thursday, February 25, 2016

What it shows:  A voltage pulse, injected into a long coaxial cable, will travel down the length of the cable and undergo a reflection at the other end. The nature of that reflection depends on how the cable is terminated at the other end. Shorting the cable at the far end produces an inverted reflection. With no termination (an "open" end), the reflected pulse is not inverted. When the impedance of the termination matches that of the cable, there is no reflection.

Knowing the length of the cable and noting the amount of time it takes the pulse to come...

Read more about Pulse Reflections in a Coax Cable
Reaction on Conveyor Track

What it shows:

A straightforward demonstration of Newton's 3rd law, that forces are interactions and thus come in pairs.

How it works:

Two people, each sitting (cross-legged) on their own board, position themselves in the center of the track facing each other. Upon pushing against each other with their hands, they glide apart down the length of the track. Repeat this with one person turned around — the other person pushes on his/her back instead of pushing against each other with their hands. The ensuing motion down the track is exactly the same as before.

... Read more about Reaction on Conveyor Track
Jumping Wire

A current carrying wire in a magnetic field experiences a force at right angles to both the field and current directions. The wire will jump up or down, depending upon the current direction.

...
Read more about Jumping Wire
Continuous Spectrum

What it shows:

White light is shown, á la Newton's demonstration of dispersion by a prism, to be composed of a continuous spectrum of colors.

How it works:

A large brilliant spectrum is produced by using a 1 kW carbon arc light source 1 with adjustable slit, a "fast" f/0.9 imaging lens, 2 and a highly dispersive in-line prism. 3 The spectrum easily fills a two meter wide screen with vibrant colors. An alternative (more compact) setup consists of a Beseler slide projector 4 which...

Read more about Continuous Spectrum

Pages