Nuclear and Elementary Particle Physics

NMR model

What it shows:  Using the classical description of the motion of a spin in an external magnetic field, the demonstration helps visualize NMR in the time domain. The nuclear magnet and its classical vector model are represented by a spinning ball with magnets attached. A rotating mass is characterized by its angular momentum L, which is the analog of the magnetic moment mu, which characterizes a rotating charge distribution. The spinning ball mimics protons in that it has both angular momentum as well as an "intrinsic" magnetic moment. The torque...

Read more about NMR model
CRT Paddle Wheel

A beam of cathode rays (electrons) impinging on a paddle wheel cause it to spin and travel down the vacuum tube.

crookes tubes

What it Shows

A paddle wheel is suspended by its axle inside a Crookes tube so that when the paddle vanes spin the entire wheel is free to travel the length of the tube...

Read more about CRT Paddle Wheel
Roller Coaster Potential

What it shows:

Potential energy curve with potential barrier illustrates electron-atom, atom-atom or ion-ion interactions.

How it works:

This is a one dimensional potential well model with a potential hill that can be used to represent several scenarios. The wooden model is made of a sandwich of three strips of plywood (1/4"-1/2"-1/4") forming the cross section as shown in figure 1. A 1" ball bearing fits snugly enough into the groove that it won't fly out when it hits the barrier.

figure 1. The roller...

Read more about Roller Coaster Potential
Potential Well Orbiter

Orbital motion simulated by ball rolling on wooden potential well.

What it shows:

Motion in a central potential is demonstrated by a ball rolling on a circular 1/r curved surface.

How it works:

The 1/r potential well simulates the gravitational potential surrounding a point mass; a ball bearing moving in this potential follows a parabolic or elliptical orbit depending upon its initial trajectory and velocity. As it loses energy due to friction, the orbit decays and the ball spirals towards the centre of the well. You could...

Read more about Potential Well Orbiter
Rutherford Scattering

What it shows:

A qualitative demonstration of Rutherford's α-particle scattering experiment using magnetic pucks on an air table.

How it works:

In its simplest form, we use an Ealing air table, 1 1m square, with a fixed magnetic puck at the center. A second puck with the same polarity is repelled and scattered by the first; the scattering angle being dependant upon the impact parameter b (see figure 1). A more complex setup is described in the Comments.


Read more about Rutherford Scattering
TV Image Deflection

Image on black and white television is deflected by a magnet, not unlike the Maltese Cross.

What it shows:
The television is basically a sophisticated cathode ray tube. The electron beam in the TV is influenced by magnetic fields in the same way as in Crookes tubes.

How it works:
The image on a black & white TV is formed by a single electron gun scanning the screen. Holding a strong magnet to the side or in front of the screen deflects the beam from its regular sweep pattern, distorting the image.


Read more about TV Image Deflection
Reversible Fluid Mixing

What it shows:

Ink is squirted into a fluid and mixed in until it disappears. By precisely undoing the motions in the reverse direction, the ink becomes unmixed! The demonstration seems to defy thermodynamics in that it appears that entropy decreases, but in actuality the reversible mixing is made possible by ensuring that the mixing/unmixing is done without turbulence.

How it works:

The space between two transparent and concentric cylinders is filled with a viscous fluid (glycerine or Karo™ syrup). One or more lines of...

Read more about Reversible Fluid Mixing