Electromagnetic Waves

Pulse Reflections in a Coax Cable Thursday, February 25, 2016

What it shows:  A voltage pulse, injected into a long coaxial cable, will travel down the length of the cable and undergo a reflection at the other end. The nature of that reflection depends on how the cable is terminated at the other end. Shorting the cable at the far end produces an inverted reflection. With no termination (an "open" end), the reflected pulse is not inverted. When the impedance of the termination matches that of the cable, there is no reflection.

Knowing the length of the cable and noting the amount of time it takes the pulse to come...

Read more about Pulse Reflections in a Coax Cable
Spectrum Piano

The visible part of the electromagnetic spectrum is represented by less than an octave of the keys; UV, IR, and microwaves are also indicated.

What it shows:

The keys of a piano are used to represent the electromagnetic spectrum, illustrating the narrow range of frequencies that constitute the portion visible to human sight.

How it works:

An old piano 1 with its center octave of keys (C4=261.6Hz to C5=523.3Hz) colored for the visible spectrum (the seven colors spread to...

Read more about Spectrum Piano
Radio Wave Properties

What it shows:

The following is a sequence of experiments that can accompany a standard lecture on electromagnetic waves. The entire sequence is quite long and you may not want to do it all in one lecture.

1) The voltage variation along the length of a dipole transmitting antenna can be made evident. The intensity variation of a fluorescent light bulb, held near the antenna, shows the voltage to be maximum at the ends and minimum in the middle of the dipole.

(2) The radio waves that radiate from the transmitting antenna are detected by...

Read more about Radio Wave Properties
Hertz Resonator

What it shows:

The transmission and detection of radio frequency electromagnetic radiation by use of LC oscillator circuits recreates the discovery by Hertz of a method to generate and detect electromagnetic waves.

How it works:

The core of the apparatus (figure 1) is a series LRC circuit (the R provided by the circuit resistance). The inductor L is a 1m diameter loop made of 1 inch copper tubing which also serves as the radiating antenna. A transformer 1 supplies 15kV to charge up the capacitor 2 until...

Read more about Hertz Resonator
Electromagnetic Spear

What it shows:

Static 3-D stylized model of an electromagnetic wave, with two sets of sinusoidal fins at 90° representing the E and B fields.

How it works:

The wave packet model consists of a wooden spine with E and B fins of 1cm wooden dowels. A plastic arrowhead gives the spine a direction.

Figure 1. The Spear

...

Read more about Electromagnetic Spear