[★★★]

Shoot-n-Drop

Ball shot horizontally, one dropped vertically; both hit the ground at the same time.

What it shows:

The horizontal and vertical motions of a projectile are independent of each other. So two objects falling under the influence of gravity from the same height will reach the ground simultaneously, regardless of their horizontal velocities.

...
Read more about Shoot-n-Drop
Three Dumbbells

Lecturer rotates on turntable whilst holding two dumbbells.

What it shows:

Angular momentum, the product of a body's moment of inertia and angular velocity, is always conserved. A reduction in moment of inertia will result in a proportional rise in angular velocity.

How it works:

A volunteer holds the other two dumbbells 1 in each hand and stands upon a rotating platform. 2 With arms outstretched and a little push they begin to rotate at a certain angular velocity. By pulling in their arms to their chest, the moment of inertia is...

Read more about Three Dumbbells
Big Chladni Plate

What it shows:

A large square metal plate, supported and harmonically driven at its center, is made to vibrate in any one of its numerous normal modes of vibration. As with the regular Chladni Plates, the two-dimensional standing wave patterns are made visible by sand accumulating along the nodal lines. What is different in this demonstration is that a multitude of resonances (across the entire audio range and lower ultrasonic frequencies) can easily be excited. Being a two-dimensional oscillator, the various resonance frequencies are not simply multiples of the...

Read more about Big Chladni Plate
Triboelectric Effects

What it shows:

As long ago as 600 B.C., the Greek philosopher Thales knew that amber, when rubbed, would attract bits of paper and other light objects. Many other substances have this same property and can be electrified by rubbing. The kind of electrification (positive or negative) depends on the substances used.

...

Read more about Triboelectric Effects
Electronic Pinhole Camera

What it shows:

The simplest method of controlling light to form an image is to use an opaque mask with a pinhole in it. Rectilinear propagation of light explains all (nearly). A video camera is substituted for the old prototypal shoe box so that an entire audience can see the pinhole image "live."

How it works:

An extremely light-sensitive video camera 1 sans lens substitutes for the pinhole camera box and film. The front of the Newvicon is the image plane and, as this sits right behind the faceplate of the camera...

Read more about Electronic Pinhole Camera
Electron Diffraction

What it shows:

Louis de Broglie predicted that matter under certain circumstances would exhibit wave-like properties. A proof of this is the repeat of X-ray diffraction experiments using electrons, whose de Broglie wavelengths at high accelerating potentials are similar to X-ray wavelengths. Here we accelerate electrons into crystal targets and get diffraction patterns identical to those from X-ray diffraction.

...

Read more about Electron Diffraction
Gravitational Lens

Laser and plastic lens with curvature to simulate bending of light by massive object.

What it shows:

Gravitational lensing is caused by the bending of light rays by the gravitational field of an intervening object. The effect is seen with the Sun, but is most spectacular when a whole galaxy acts as a lens to a cosmologically distant object, such as a quasar. Depending on the geometry of the alignment and the structure of the lensing galaxy, the image of the quasar is distorted into two or more distinct images, sweeping arcs or a complete ring. Here we model...

Read more about Gravitational Lens
Sodium Absorption

What it shows:

Sodium 'D' line absorption showing up as a black line in the yellow of a continuous spectrum. Good as a simulation of the sodium portion of the Fraunhoffer absorption spectrum caused by atoms in the solar atmosphere; it does not however, resolve the 5890/5896Å doublet.

How it works:

As in the Sun, which is a black body source surrounded by an atmosphere of cooler gas containing many heavy atoms including sodium, we can set up a black body spectrum using a slide projector, and provide a hot sodium 'atmosphere' using...

Read more about Sodium Absorption
Iron Tin Reaction Kinetics

Dark red iron[III] solution is rapidly reduced to colorless iron[II] by addition of tin[II] chloride solution, with the rate depending on concentration and temperature.

Four medium footed cylinders are prepared with 100 ml of ferric chloride solution 0.01M with potassium thiocyanate solution added to make the dark red complex. One of the solutions should be hot, so just the iron and thiocyanate solutions in that cylinder, with a 150ml beaker for the demonstrator to fill with hot water from the water cooler, right before the demonstration.

The cylinders are on the bench top in...

Read more about Iron Tin Reaction Kinetics

Pages