Microscope Resolution Tuesday, December 6, 2016

What it shows:  The wave nature of light limits our ability to see the very small. Application of the Rayleigh limit of resolution tells us that the size of the smallest objects one can resolve under a microscope is approximately equal to the wavelength of light. The optical limits of a microscope are demonstrated as one attempts to resolve 1 μm diameter spheres (about twice the wavelength of light) — one sees spots of light surrounded by diffraction rings rather than sharply defined spheres, similar to the 3rd image (from: Cagnet/Francon/Thrierr, Atlas of Optical...

Read more about Microscope Resolution
Pulse Reflections in a Coax Cable Thursday, February 25, 2016

What it shows:  A voltage pulse, injected into a long coaxial cable, will travel down the length of the cable and undergo a reflection at the other end. The nature of that reflection depends on how the cable is terminated at the other end. Shorting the cable at the far end produces an inverted reflection. With no termination (an "open" end), the reflected pulse is not inverted. When the impedance of the termination matches that of the cable, there is no reflection.

Knowing the length of the cable and noting the amount of time it takes the pulse to come...

Read more about Pulse Reflections in a Coax Cable
Reverse Sprinkler Friday, December 18, 2015:

What it Shows

Inspired by Richard Feynman's story in his 1985 book (pp 63-65), Surely You're Joking Mr. Feynman, the demonstration answers the question "which direction does a lawn sprinkler spin if water enters the nozzle rather than being expelled from the nozzle?" The reverse sprinkler spins in the opposite direction of a "normal" sprinkler. "Dissipative effects" has been the hand-waving reason for the past 30 years, but the real reason why it spins in the reverse direction is far from obvious (see Comments, below). It turns out that a sprinkler designed to be "truly...

Read more about Reverse Sprinkler
Vector Arrows

Wooden arrow vectors, hand held or mountable.

What It Shows:

Various length and color, wooden arrow vectors can be hand-held, placed (magnetically) on the blackboard, or stuck into a wooden block to define a coordinate system. Small vector blocks can be used as body axes or to visualize coordinate transformations.


Read more about Vector Arrows
Potential Well

Orbital motion simulated by ball rolling on wooden potential well.

What it shows:

Motion in a central potential is demonstrated by a ball rolling on a circular 1/r curved surface.

How it works:

The 1/r potential well simulates the gravitational potential surrounding a point mass; a ball bearing moving in this potential follows a parabolic or elliptical orbit depending upon its initial trajectory and velocity. As it loses energy due to friction, the orbit decays and the ball spirals towards the centre of the well. You could...

Read more about Potential Well
Vibrating String

A 1.5m length of string driven at one end and fixed at the other shows standing waves for various driving frequencies.

What it shows

vibrating string

The fundamental is the most dramatically visible state (usually around 15Hz). It's possible to show up to 8 nodes clearly--bearing in mind...

Read more about Vibrating String
Triboelectric Effects

What it shows:

As long ago as 600 B.C., the Greek philosopher Thales knew that amber, when rubbed, would attract bits of paper and other light objects. Many other substances have this same property and can be electrified by rubbing. The kind of electrification (positive or negative) depends on the substances used.


Read more about Triboelectric Effects